Mostrar el registro sencillo del ítem
dc.contributor.author
Benalcazar Palacios, Marco Enrique
dc.contributor.author
Brun, Marcel
dc.contributor.author
Ballarin, Virginia Laura
dc.date.available
2018-01-29T17:00:39Z
dc.date.issued
2014-09
dc.identifier.citation
Benalcazar Palacios, Marco Enrique; Brun, Marcel; Ballarin, Virginia Laura; Automatic design of aperture filters using neural networks applied to ocular image segmentation; European Association for Signal Processing; European Signal Processing Conference; 22; 9-2014; 2195-2199
dc.identifier.issn
2219-5491
dc.identifier.uri
http://hdl.handle.net/11336/34876
dc.description.abstract
Aperture filters are image operators which combine mathematical morphology and pattern recognition theory to design windowed classifiers. Previous works propose designing and representing such operators using large decision tables and classic linear pattern classifiers. These approaches demand an enormous computational cost in order to solve real image problems. The current work presents a new method to automatically design Aperture filters for color and grayscale image processing. This approach consists of designing a family of Aperture filters using artificial feed-forward neural networks. The resulting Aperture filters are combined into a single one using an ensemble method. The performance of the proposed approach was evaluated by segmenting blood vessels in ocular images of the DRIVE database. The results show the suitability of this approach: It outperforms window operators designed using neural networks and logistic regression as well as Aperture filters designed using logistic regression and support vector machines.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
European Association for Signal Processing
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Apertures
dc.subject
Artificial Neural Networks
dc.subject
Image Segmentation
dc.subject
Training
dc.subject
Gray-Scale
dc.subject
Biomedical Imaging
dc.subject
Blood Vessels
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Automatic design of aperture filters using neural networks applied to ocular image segmentation
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-01-26T19:00:40Z
dc.journal.volume
22
dc.journal.pagination
2195-2199
dc.journal.pais
Bélgica
dc.journal.ciudad
Bruselas
dc.description.fil
Fil: Benalcazar Palacios, Marco Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Secretaría Nacional de Educación Superior, Ciencia Tecnología e Innovación; Ecuador
dc.description.fil
Fil: Brun, Marcel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
dc.description.fil
Fil: Ballarin, Virginia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina
dc.journal.title
European Signal Processing Conference
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6952799/
Archivos asociados