Mostrar el registro sencillo del ítem

dc.contributor.author
Benalcazar Palacios, Marco Enrique  
dc.contributor.author
Brun, Marcel  
dc.contributor.author
Ballarin, Virginia Laura  
dc.date.available
2018-01-29T17:00:39Z  
dc.date.issued
2014-09  
dc.identifier.citation
Benalcazar Palacios, Marco Enrique; Brun, Marcel; Ballarin, Virginia Laura; Automatic design of aperture filters using neural networks applied to ocular image segmentation; European Association for Signal Processing; European Signal Processing Conference; 22; 9-2014; 2195-2199  
dc.identifier.issn
2219-5491  
dc.identifier.uri
http://hdl.handle.net/11336/34876  
dc.description.abstract
Aperture filters are image operators which combine mathematical morphology and pattern recognition theory to design windowed classifiers. Previous works propose designing and representing such operators using large decision tables and classic linear pattern classifiers. These approaches demand an enormous computational cost in order to solve real image problems. The current work presents a new method to automatically design Aperture filters for color and grayscale image processing. This approach consists of designing a family of Aperture filters using artificial feed-forward neural networks. The resulting Aperture filters are combined into a single one using an ensemble method. The performance of the proposed approach was evaluated by segmenting blood vessels in ocular images of the DRIVE database. The results show the suitability of this approach: It outperforms window operators designed using neural networks and logistic regression as well as Aperture filters designed using logistic regression and support vector machines.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
European Association for Signal Processing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Apertures  
dc.subject
Artificial Neural Networks  
dc.subject
Image Segmentation  
dc.subject
Training  
dc.subject
Gray-Scale  
dc.subject
Biomedical Imaging  
dc.subject
Blood Vessels  
dc.subject.classification
Ciencias de la Computación  
dc.subject.classification
Ciencias de la Computación e Información  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Automatic design of aperture filters using neural networks applied to ocular image segmentation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-01-26T19:00:40Z  
dc.journal.volume
22  
dc.journal.pagination
2195-2199  
dc.journal.pais
Bélgica  
dc.journal.ciudad
Bruselas  
dc.description.fil
Fil: Benalcazar Palacios, Marco Enrique. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Secretaría Nacional de Educación Superior, Ciencia Tecnología e Innovación; Ecuador  
dc.description.fil
Fil: Brun, Marcel. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina  
dc.description.fil
Fil: Ballarin, Virginia Laura. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Mar del Plata. Facultad de Ingeniería; Argentina  
dc.journal.title
European Signal Processing Conference  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://ieeexplore.ieee.org/document/6952799/