Artículo
Entropy on a null surface for interacting quantum field theories and the Bousso bound
Fecha de publicación:
15/04/2015
Editorial:
American Physical Society
Revista:
Physical Review D: Particles, Fields, Gravitation And Cosmology
ISSN:
1550-7998
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We study the vacuum-subtracted von Neumann entropy of a segment on a null plane. We argue that for interacting quantum field theories in more than two dimensions, this entropy has a simple expression in terms of the expectation value of the null components of the stress tensor on the null interval. More explicitly ∆S is given by a theory-dependent function. This function is constrained by general properties of quantum relative entropy. These constraints are enough to extend our recent free field proof of the quantum Bousso bound to the interacting case. This unusual expression for the entropy as the expectation value of an operator implies that the entropy is equal to the modular Hamiltonian, ∆S = h∆Ki, where K is the operator in the right hand side. We explain how this equality is compatible with a non-zero value for ∆S. Finally, we also compute explicitly the function g(x+) for theories that have a gravity dual.
Palabras clave:
Entanglement Entropy
,
Null Surfaces
,
Bausso Bound
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Bousso, Raphael; Casini, Horacio German; Fisher, Zacharias; Maldacena, Juan; Entropy on a null surface for interacting quantum field theories and the Bousso bound; American Physical Society; Physical Review D: Particles, Fields, Gravitation And Cosmology; 91; 8; 15-4-2015; 1-35
Compartir
Altmétricas