Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Discovering knowledge from data clustering using automatically defined interval type-2 fuzzy predicates

Comas, Diego SebastiánIcon ; Meschino, Gustavo Javier; Nowé, Ann; Ballarin, Virginia Laura
Fecha de publicación: 02/2017
Editorial: Pergamon-Elsevier Science Ltd.
Revista: Expert Systems with Applications
ISSN: 0957-4174
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería de Sistemas y Comunicaciones

Resumen

In data clustering fuzzy predicates act as cluster descriptors providing linguistically expressed knowledge which indicates how features are related to each cluster. Fuzzy predicates directly and automatically obtained from data enable discovering knowledge inside clusters, even when there is no prior-information about the clustering problem. In this work a new method for automatic discovering of interval type-2 fuzzy predicates in data clustering is proposed, called Type-2 Data-based Fuzzy Predicate Clustering (T2-DFPC). In a first stage, a data analysis is performed by making a random partition of the original data and running a clustering scheme that automatically determines the suitable number of clusters. From this stage, interval type-2 fuzzy predicates are discovered. Results obtained on very different clustering datasets show that the T2-DFPC method was consistently one of the best in terms of accuracy. The method preserves all known advantages of the interval type-2 FL to deal with problems with vagueness, quantifying the degree of truth of the fuzzy predicates and modelling the variability of the data inside the clusters. The proposed method is a fast, useful, general, and unsupervised approach for interpretable data clustering, being the knowledge-extracting capabilities one of the main contributions. Linguistic expressions can be easily adapted to match the terminology used in the field the data are related to. The predicates are able to generalize the knowledge for new cases (new data), as an intelligent system. This new approach might be surprisingly useful in contexts where, besides the clustering partition, summary information from data is of interest.
Palabras clave: Fuzzy Predicates , Interval Type-2 Fuzzy Logic , Clustering , Knowledge-Discovering , Vagueness
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.543Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/34704
DOI: http://dx.doi.org/10.1016/j.eswa.2016.10.018
URL: https://www.sciencedirect.com/science/article/pii/S0957417416305498
Colecciones
Articulos(CCT - MAR DEL PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - MAR DEL PLATA
Citación
Comas, Diego Sebastián; Meschino, Gustavo Javier; Nowé, Ann; Ballarin, Virginia Laura; Discovering knowledge from data clustering using automatically defined interval type-2 fuzzy predicates; Pergamon-Elsevier Science Ltd.; Expert Systems with Applications; 68; 1; 2-2017; 136-150
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES