Mostrar el registro sencillo del ítem

dc.contributor.author
Gómez Ravetti, Martín  
dc.contributor.author
Carpi, Laura C.  
dc.contributor.author
Gonçalves, Bruna Amin  
dc.contributor.author
Frery, Alejandro César  
dc.contributor.author
Rosso, Osvaldo Aníbal  
dc.date.available
2018-01-25T18:09:55Z  
dc.date.issued
2014-09  
dc.identifier.citation
Gómez Ravetti, Martín; Carpi, Laura C.; Gonçalves, Bruna Amin; Frery, Alejandro César; Rosso, Osvaldo Aníbal; Distinguishing Noise from Chaos: Objective versus Subjective Criteria Using Horizontal Visibility Graph; Public Library of Science; Plos One; 9; 9; 9-2014; 1-37; e108004  
dc.identifier.issn
1932-6203  
dc.identifier.uri
http://hdl.handle.net/11336/34613  
dc.description.abstract
A recently proposed methodology called the Horizontal Visibility Graph (HVG) [Luque et al., Phys. Rev. E., 80, 046103 (2009)] that constitutes a geometrical simplification of the well known Visibility Graph algorithm [Lacasa et al., Proc. Natl. Sci. U.S.A. 105, 4972 (2008)], has been used to study the distinction between deterministic and stochastic components in time series [L. Lacasa and R. Toral, Phys. Rev. E., 82, 036120 (2010)]. Specifically, the authors propose that the node degree distribution of these processes follows an exponential functional of the form P(κ)~exp(–λk), in which κ is the node degree and λ is a positive parameter able to distinguish between deterministic (chaotic) and stochastic (uncorrelated and correlated) dynamics. In this work, we investigate the characteristics of the node degree distributions constructed by using HVG, for time series corresponding to 28 chaotic maps, 2 chaotic flows and 3 different stochastic processes. We thoroughly study the methodology proposed by Lacasa and Toral finding several cases for which their hypothesis is not valid. We propose a methodology that uses the HVG together with Information Theory quantifiers. An extensive and careful analysis of the node degree distributions obtained by applying HVG allow us to conclude that the Fisher-Shannon information plane is a remarkable tool able to graphically represent the different nature, deterministic or stochastic, of the systems under study.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Public Library of Science  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by/2.5/ar/  
dc.subject
Horizontal Visibility Graph  
dc.subject
Information Theory  
dc.subject
Chaos  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Distinguishing Noise from Chaos: Objective versus Subjective Criteria Using Horizontal Visibility Graph  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-01-24T18:59:50Z  
dc.journal.volume
9  
dc.journal.number
9  
dc.journal.pagination
1-37; e108004  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
San Francisco  
dc.description.fil
Fil: Gómez Ravetti, Martín. Universidade Federal do Minas Gerais; Brasil. Universidad de Barcelona; España  
dc.description.fil
Fil: Carpi, Laura C.. Universidade Federal de Alagoas; Brasil  
dc.description.fil
Fil: Gonçalves, Bruna Amin. Universidade Federal do Minas Gerais; Brasil  
dc.description.fil
Fil: Frery, Alejandro César. Universidade Federal de Alagoas; Brasil  
dc.description.fil
Fil: Rosso, Osvaldo Aníbal. Universidade Federal de Alagoas; Brasil. Instituto Tecnológico de Buenos Aires; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Plos One  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1371/journal.pone.0108004  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0108004