Artículo
Thermal and mechanical properties of nanocomposites based on a PLLA-b-PEO-b-PLLA triblock copolymer and nanohydroxyapatite
Loiola, Livia M. D.; Fasce, Laura Alejandra
; Da Silva, Laura C. E.; Goncalves, Maria C.; Frontini, Patricia Maria
; Felisberti, Maria I.
Fecha de publicación:
16/08/2016
Editorial:
Wiley
Revista:
Journal of Applied Polymer Science
ISSN:
0021-8995
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Composites which combine biocompatible polymers and hydroxyapatite are unique materials with regards to their mechanical properties and bioactivity in the development of temporary bone-fixation devices. Nanocomposites based on a biocompatible and amphiphilic triblock copolymer of poly(L-lactide) (PLLA) and poly(ethylene oxide) (PEO) —PLLA-b-PEO-b-PLLA— and neat (nHAp) or PEO-modified (nHAp@PEO) hydroxyapatite nanoparticles were prepared by dispersion in benzene solutions, followed by freeze-drying and injection moulding processes. The morphology of the copolymers of a PEO block dispersed throughout a PLLA matrix was not changed with addition of the nanofillers. The nHAp particles were spherical and, after modification, the nHAp@PEO nanoparticles were partially agglomerated. In the nanocomposites, these particles characteristics remained unchanged, and the nHAp particles and nHAp@PEO agglomerates were uniformly dispersed through the copolymer matrix. These particles acted as nucleating agents, with nHAp@PEO being more efficient. The incorporation of nHAp increased both the reduced elastic modulus (22%) and the indentation hardness (15%) in comparison to the copolymer matrix, as determined by nanoindentation tests, while nHAp@PEO addition resulted in lower increments of these mechanical parameters. The incorporation of untreated nHAp was, therefore, more beneficial with regards to the mechanical properties, since the amphiphilic PLLA-b-PEO-b-PLLA matrix was already efficient for nHAp nanoparticles dispersion.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(INTEMA)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Articulos de INST.DE INV.EN CIENCIA Y TECNOL.MATERIALES (I)
Citación
Loiola, Livia M. D.; Fasce, Laura Alejandra; Da Silva, Laura C. E.; Goncalves, Maria C.; Frontini, Patricia Maria; et al.; Thermal and mechanical properties of nanocomposites based on a PLLA-b-PEO-b-PLLA triblock copolymer and nanohydroxyapatite; Wiley; Journal of Applied Polymer Science; 133; 44; 16-8-2016; 44187
Compartir
Altmétricas