Artículo
Highly active La0.4Sr0.6Co0.8Fe0.2O3−δ nanocatalyst for oxygen reduction in intermediate temperature-solid oxide fuel cells
Fecha de publicación:
07/2014
Editorial:
Elsevier Science
Revista:
Journal of Power Sources
ISSN:
0378-7753
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Pure-phase La0.4Sr0.6Co0.8Fe0.2O3−δ (LSCF) nanocrystallites were successfully synthesized by the combustion method, by employing glycine as fuel and complexing agent, and ammonium nitrate as combustion trigger. The morphological and structural characterization of the LSCF nanopowders was performed by using X-ray diffraction, N2 physisorption and electron microscopy. The LSCF nanopowder consists of interconnected nanocrystallites (∼45 nm) forming a sponge-like structure with meso and macropores, being its specific surface area around 10 m2 g−1. Crystalline structural analyses show that the LSCF nanopowder presents cubic symmetry in the Pm-3m space group. By employing the spin coating technique and different thermal treatments, symmetrical cells with different electrode crystallite size (45 and 685 nm) were built, by using La0.8Sr0.2Ga0.8Mg0.2O3−δ as electrolyte. Electrochemical impedance spectroscopy measurements were performed varying temperature and pO2. The area specific resistance of the nanostructured sample (45 nm) decreases by two orders of magnitude with respect to the submicrostructured sample (685 nm), reaching values as low as 0.8 Ω cm2 at 450 °C. This improvement is attributed to the cathode morphology optimization in the nanoscale, i.e., enlargement of the exposed surface area and shortening of the oxygen diffusion paths, which reduce the polarization resistance associated to the surface exchange and O-ion bulk diffusion process.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - PATAGONIA NORTE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - PATAGONIA NORTE
Citación
Chanquia, Corina Mercedes; Mogni, Liliana Verónica; Troiani, Horacio Esteban; Caneiro, Alberto; Highly active La0.4Sr0.6Co0.8Fe0.2O3−δ nanocatalyst for oxygen reduction in intermediate temperature-solid oxide fuel cells; Elsevier Science; Journal of Power Sources; 270; 7-2014; 457-467
Compartir
Altmétricas