Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Models for predicting default: towards efficient forecasts

Castagnolo, Fernando; Ferro, Gustavo AdolfoIcon
Fecha de publicación: 01/2014
Editorial: Emerald
Revista: Journal of Risk Finance
ISSN: 1526-5943
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Economía, Econometría

Resumen

PURPOSE: The purpose of this paper is to assess and compare the forecast ability of existing credit risk models, answering three questions: Can these methods adequately predict default events? Are there dominant methods? Is it safer to rely on a mix of methodologies? DESIGN/METHODOLOGY/APPROACH: The authors examine four existing models: O-score, Z-score, Campbell, and Merton distance to default model (MDDM). The authors compare their ability to forecast defaults using three techniques: intra-cohort analysis, power curves and discrete hazard rate models. FINDINGS: The authors conclude that better predictions demand a mix of models containing accounting and market information. The authors found evidence of the O-score’s outperformance relative to the other models. The MDDM alone in the sample is not a sufficient default predictor. But discrete hazard rate models suggest that combining both should enhance default prediction models. RESEARCH LIMITATIONS/IMPLICATIONS: The analysed methods alone cannot adequately predict defaults. The authors found no dominant methods. Instead, it would be advisable to rely on a mix of methodologies, which use complementary information. Practical implications – Better forecasts demand a mix of models containing both accounting and market information. ORIGINALITY/VALUE: The findings suggest that more precise default prediction models can be built by combining information from different sources in reduced-form models and combining default prediction models that can analyze said information.
Palabras clave: Efficiency , Default Models , Forecasting , Financial Crisis , Credit Risk , Empirical Analysis
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 278.7Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/34206
URL: http://www.emeraldinsight.com/doi/abs/10.1108/JRF-08-2013-0057
DOI: http://dx.doi.org/10.1108/JRF-08-2013-0057
Colecciones
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Citación
Castagnolo, Fernando; Ferro, Gustavo Adolfo; Models for predicting default: towards efficient forecasts; Emerald; Journal of Risk Finance; 15; 1; 1-2014; 52-70
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES