Artículo
On Topological Derivatives for Contact Problems in Elasticity
Fecha de publicación:
06/2014
Editorial:
Springer/plenum Publishers
Revista:
Journal Of Optimization Theory And Applications
ISSN:
0022-3239
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this article, a general method for shape-topology sensitivity analysis of contact problems is proposed. The method uses domain decomposition combined with specific properties of minimizers for the energy functional. The method is applied to the static problem of an elastic body in frictionless contact with a rigid foundation. The contact model allows a small interpenetration of the bodies in the contact region. This interpenetration is modeled by means of a scalar function that depends on the normal component of the displacement field on the potential contact zone. We present the asymptotic behavior of the energy shape functional when a spheroidal void is introduced at an arbitrary point of the elastic body. For the asymptotic analysis, we use a nonoverlapping domain decomposition technique and the associated Steklov–Poincaré pseudodifferential operator. The differentiability of the energy with respect to the nonsmooth perturbation is established, and the topological derivative is presented in the closed form.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Giusti, Sebastian Miguel; Sokolowski, Jan; Stebel,Jan; On Topological Derivatives for Contact Problems in Elasticity; Springer/plenum Publishers; Journal Of Optimization Theory And Applications; 165; 1; 6-2014; 279-294
Compartir
Altmétricas