Mostrar el registro sencillo del ítem
dc.contributor.author
Areces, Carlos Eduardo
dc.contributor.author
Blackburn, Patrick
dc.contributor.author
Huertas, Antonia
dc.contributor.author
Manzano, Maria
dc.date.available
2018-01-19T15:16:10Z
dc.date.issued
2014-05
dc.identifier.citation
Areces, Carlos Eduardo; Blackburn, Patrick; Huertas, Antonia; Manzano, Maria; Completeness in Hybrid Type Theory; Springer; Journal of Philosophical Logic; 43; 2-3; 5-2014; 209-238
dc.identifier.issn
0022-3611
dc.identifier.uri
http://hdl.handle.net/11336/33948
dc.description.abstract
We show that basic hybridization (adding nominals and @ operators) makes it possible to give straightforward Henkin-style completeness proofs even when the modal logic being hybridized is higher-order. The key ideas are to add nominals as expressions of type t, and to extend to arbitrary types the way we interpret @i@i in propositional and first-order hybrid logic. This means: interpret @iαa@iαa , where αaαa is an expression of any type aa , as an expression of type aa that rigidly returns the value that αaαa receives at the i-world. The axiomatization and completeness proofs are generalizations of those found in propositional and first-order hybrid logic, and (as is usual inhybrid logic) we automatically obtain a wide range of completeness results for stronger logics and languages. Our approach is deliberately low-tech. We don’t, for example, make use of Montague’s intensional type s, or Fitting-style intensional models; we build, as simply as we can, hybrid logicover Henkin’s logic.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Hybrid Logic
dc.subject
Type Theory
dc.subject
Higher-Order Modal Logic
dc.subject
Nominals
dc.subject
@ Operators
dc.subject.classification
Ciencias de la Computación
dc.subject.classification
Ciencias de la Computación e Información
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Completeness in Hybrid Type Theory
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-01-18T21:01:08Z
dc.journal.volume
43
dc.journal.number
2-3
dc.journal.pagination
209-238
dc.journal.pais
Países Bajos
dc.journal.ciudad
Dordrecht
dc.description.fil
Fil: Areces, Carlos Eduardo. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina. Universidad Nacional de Córdoba; Argentina
dc.description.fil
Fil: Blackburn, Patrick. University of Roskilde. Roskilde; Dinamarca
dc.description.fil
Fil: Huertas, Antonia. Universitat Oberta de Catalunya; España
dc.description.fil
Fil: Manzano, Maria. Universidad de Salamanca; España
dc.journal.title
Journal of Philosophical Logic
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s10992-012-9260-4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs10992-012-9260-4
Archivos asociados