Artículo
Analysis and Comparison of Biased Affine Estimators
Fecha de publicación:
02/2015
Editorial:
Institute Of Electrical And Electronics Engineers
Revista:
Ieee Transactions On Signal Processing
ISSN:
1053-587X
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Affine biased estimation is particularly useful when there is some a-priori knowledge on the parameters that can be exploited in adverse situations (when the number of samples is low, or the noise is high). Three different affine estimation strategies are discussed, namely the Deepest Minimum Criterion (DMC), the Min-Max (MM), and the Linear Matrix Inequality (LMI) strategies, and closed form expressions are obtained for all of them, for the case when the a priori knowledge is given in the form of ellipsoidal constraints on the parameter space, and when the covariance matrix of the unbiased estimator is constant. A relationship between affine estimation and Bayesian estimation of the mean of a multivariate Gaussian distribution with Gaussian prior is established and it is shown how affine estimation theory can help in the choice of the Gaussian prior distribution.
Palabras clave:
Llenar Palabras Clave
,
Cargar Paper
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Cernuschi Frias, Bruno; Gama, Fernando; Casaglia, Daniel; Analysis and Comparison of Biased Affine Estimators; Institute Of Electrical And Electronics Engineers; Ieee Transactions On Signal Processing; 63; 4; 2-2015; 859-869
Compartir