Artículo
Boundary Control of Full-Bridge ZVS: Natural Switching Surface for Transient and Steady-State Operation
Fecha de publicación:
02/2014
Editorial:
Institute of Electrical and Electronics Engineers
Revista:
Ieee Transactions On Industrial Electronics
ISSN:
0278-0046
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
This paper presents the use of a high-performance boundary controller for the full-bridge zero-voltage-switching topology. An enhanced dynamic response is obtained by employing the natural switching surface (SS), which is thoroughly derived in the normalized geometrical domain. The advantages of the normalization are the simple graphical representation, the generality for any combination of parameters, and the mathematical simplicity. Recently, nonisolated basic topologies have benefited from advancements in boundary control. The analysis and derivation in this work bring the benefit of outstanding dynamic performance to this isolated topology. As demonstrated in this work, the relationship between the leakage and output filter inductances makes the formulation of the natural trajectories for isolated converters possible. The resulting SS provides an excellent dynamic response during start-up, reference change, and sudden output loading conditions. Experimental results are presented to illustrate the characteristics and advantages of the control scheme and the converter operation with fixed switching frequency.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - CORDOBA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - CORDOBA
Citación
Oggier, German Gustavo; Ordonez, Martin; Boundary Control of Full-Bridge ZVS: Natural Switching Surface for Transient and Steady-State Operation; Institute of Electrical and Electronics Engineers; Ieee Transactions On Industrial Electronics; 61; 2; 2-2014; 969-979
Compartir
Altmétricas