Artículo
On normal operator logarithms
Fecha de publicación:
07/2013
Editorial:
Elsevier Science Inc
Revista:
Linear Algebra And Its Applications
ISSN:
0024-3795
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let X,Y be normal bounded operators on a Hilbert space such that e^X=e^Y. If the spectra of X and Y are contained in the strip S of the complex plane defined by |Im(z)|leq pi, we show that |X|=|Y|. If Y is only assumed to be bounded, then |X|Y=Y|X|. We give a formula for X-Y in terms of spectral projections of X and Y provided that X,Y are normal and e^X=e^Y. <br />If X is an unbounded self-adjoint operator, which does not have (2k+1) pi, k in Z, as eigenvalues, and Y is normal with spectrum in S satisfying e^{iX}=e^Y, then Y in { e^{iX} }´´. We give alternative proofs and generalizations of results on normal operator exponentials proved by Ch. Schmoeger.
Palabras clave:
Exponential Map
,
Normal Operator
,
Spectral Theorem
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Citación
Chiumiento, Eduardo Hernan; On normal operator logarithms; Elsevier Science Inc; Linear Algebra And Its Applications; 439; 7-2013; 455-462
Compartir
Altmétricas