Mostrar el registro sencillo del ítem

dc.contributor.author
Blanco, Federico Carlos  
dc.contributor.author
Bigi, Fabiana  
dc.contributor.author
Soria, Marcelo Abel  
dc.date.available
2018-01-17T18:46:23Z  
dc.date.issued
2014-05  
dc.identifier.citation
Soria, Marcelo Abel; Bigi, Fabiana; Blanco, Federico Carlos; Identification of potential biomarkers of disease progression in bovine tuberculosis; Elsevier; Veterinary Immunology And Immunopathology; 160; 3-4; 5-2014; 177-183  
dc.identifier.issn
0165-2427  
dc.identifier.uri
http://hdl.handle.net/11336/33659  
dc.description.abstract
Bovine tuberculosis (bTB) remains an important animal and zoonotic disease in many countries. The diagnosis of bTB is based on tuberculin skin test and IFN-γ release assays (IGRA). Positive animals are separated from the herd and sacrificed. The cost of this procedure is difficult to afford for developing countries with high prevalence of bTB; therefore, the improvement of diagnostic methods and the identification of animals in different stages of the disease will be helpful to control the infection. To identify biomarkers that can discriminate between tuberculin positive cattle with and without tuberculosis lesions (ML+ and ML-, respectively), we assessed a group of immunological parameters with three different classification methods: lineal discriminant analysis (LDA), quadratic discriminant analysis (QDA) and K nearest neighbors (k-nn). For this purpose, we used data from 30 experimentally infected cattle. All the classifiers (LDA, QDA and k-nn) selected IL-2 and IL-17 as the most discriminatory variables. The best classification method was LDA using IL-17 and IL-2 as predictors. The addition of IL-10 to LDA improves the performance of the classifier to discriminate ML-individuals (93.3% vs. 86.7%). Thus, the expression of IL-17, IL-2 and, in some cases, IL-10 would serve as an additional tool to study disease progression in herds with a history of bTB.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Bovine Tuberculosis  
dc.subject
Il-17  
dc.subject
Discriminant Analysis  
dc.subject
Biomarker  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Identification of potential biomarkers of disease progression in bovine tuberculosis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-01-16T18:04:59Z  
dc.journal.volume
160  
dc.journal.number
3-4  
dc.journal.pagination
177-183  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Ámsterdam  
dc.description.fil
Fil: Blanco, Federico Carlos. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina  
dc.description.fil
Fil: Bigi, Fabiana. Instituto Nacional de Tecnología Agropecuaria. Centro de Investigación en Ciencias Veterinarias y Agronómicas. Instituto de Biotecnología; Argentina  
dc.description.fil
Fil: Soria, Marcelo Abel. Universidad de Buenos Aires. Facultad de Agronomía; Argentina. Universidad de Buenos Aires. Facultad de Agronomía. Departamento de Biología Aplicada y Alimentos. Cátedra de Microbiología Agrícola; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Parque Centenario. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales. Universidad de Buenos Aires. Facultad de Agronomía. Instituto de Investigaciones en Biociencias Agrícolas y Ambientales; Argentina  
dc.journal.title
Veterinary Immunology And Immunopathology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.vetimm.2014.04.008  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0165242714001111