Mostrar el registro sencillo del ítem

dc.contributor.author
Restrepo Rinckoar, Juan Felipe  
dc.contributor.author
Schlotthauer, Gaston  
dc.contributor.author
Torres, Maria Eugenia  
dc.date.available
2018-01-17T15:17:05Z  
dc.date.issued
2014-05  
dc.identifier.citation
Restrepo Rinckoar, Juan Felipe; Schlotthauer, Gaston; Torres, Maria Eugenia; Maximum approximate entropy and threshold: A new approach for regularity changes detection; Elsevier; Physica A: Statistical Mechanics and its Applications; 409; 5-2014; 97-109  
dc.identifier.issn
0378-4371  
dc.identifier.uri
http://hdl.handle.net/11336/33590  
dc.description.abstract
Approximate entropy (ApEn) has been widely used as an estimator of regularity in many scientific fields. It has proved to be a useful tool because of its ability to distinguish different system’s dynamics when there is only available short-length noisy data. Incorrect parameter selection (embedding dimension m, threshold r and data length N) and the presence of noise in the signal can undermine the ApEn discrimination capacity. In this work we show that rmax (ApEn(m,rmax,N)=ApEnmax) can also be used as a feature to discern between dynamics. Moreover, the combined use of ApEnmax and rmax allows a better discrimination capacity to be accomplished, even in the presence of noise. We conducted our studies using real physiological time series and simulated signals corresponding to both low- and high-dimensional systems. When ApEnmax is incapable of discerning between different dynamics because of the noise presence, our results suggest that rmax provides additional information that can be useful for classification purposes. Based on cross-validation tests, we conclude that, for short length noisy signals, the joint use of ApEnmax and rmax can significantly decrease the misclassification rate of a linear classifier in comparison with their isolated use.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Non-Linear Dynamics  
dc.subject
Approximate Entropy  
dc.subject
Chaotic Time-Series  
dc.subject.classification
Ingeniería de Sistemas y Comunicaciones  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Maximum approximate entropy and threshold: A new approach for regularity changes detection  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-01-16T18:02:15Z  
dc.journal.volume
409  
dc.journal.pagination
97-109  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Ámsterdam  
dc.description.fil
Fil: Restrepo Rinckoar, Juan Felipe. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Schlotthauer, Gaston. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Torres, Maria Eugenia. Universidad Nacional de Entre Ríos. Facultad de Ingeniería. Departamento de Matemática e Informática. Laboratorio de Señales y Dinámicas no Lineales; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Physica A: Statistical Mechanics and its Applications  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.physa.2014.04.041  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.sciencedirect.com/science/article/pii/S0378437114003598  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1405.7637