Mostrar el registro sencillo del ítem

dc.contributor.author
Xu, Xiu Ling  
dc.contributor.author
Gutt, Alexander  
dc.contributor.author
Mechelke, Jonas  
dc.contributor.author
Raffelberg, Sarah  
dc.contributor.author
Tang, Kun  
dc.contributor.author
Miao, Dan  
dc.contributor.author
Valle, Lorena  
dc.contributor.author
Borsarelli, Claudio Darío  
dc.contributor.author
Zhao, Kai Hong  
dc.contributor.author
Gärtner, Wolfgang  
dc.date.available
2018-01-16T19:27:03Z  
dc.date.issued
2014-04  
dc.identifier.citation
Xu, Xiu Ling; Gärtner, Wolfgang; Zhao, Kai Hong; Borsarelli, Claudio Darío; Gutt, Alexander; Mechelke, Jonas; et al.; Combined Mutagenesis and Kinetics Characterization of the Bilin-Binding GAF Domain of the Protein Slr1393 from the Cyanobacterium Synechocystis PCC6803; Wiley VCH Verlag; Chembiochem; 15; 8; 4-2014; 1190-1199  
dc.identifier.issn
1439-4227  
dc.identifier.uri
http://hdl.handle.net/11336/33486  
dc.description.abstract
The gene slr1393 from Synechocystis sp. PCC6803 encodes a protein composed of three GAF domains, a PAS domain, and a histidine kinase domain. GAF3 is the sole domain able to bind phycocyanobilin (PCB) as chromophore and to accomplish photochemistry: switching between a red-absorbing parental and a green-absorbing photoproduct state (lmax=649 and 536 nm, respectively). Conversions in both directions were followed by time-resolved absorption spectroscopy with the separately expressed GAF3 domain of Slr1393. Global fit analysis of the recorded absorbance changes yielded three lifetimes (3.2 ms, 390 ms, and 1.5 ms) for the red-to-green conversion, and 1.2 ms, 340 ms, and 1 ms for the green-to-red conversion. In addition to the wild-type (WT) protein, 24 mutated proteins were studied spectroscopically. The design of these site-directed mutations was based on sequence alignments with related proteins and by employing the crystal structure of AnPixJg2 (PDB ID: 3W2Z), a Slr1393 orthologous from Anabaena sp.PCC7120. The structure of AnPixJg2 was also used as template for model building, thus confirming the strong structural similarity between the proteins, and for identifying amino acids to target for mutagenesis. Only amino acids in close proximity to the chromophore were exchanged, as these were considered likely to have an impact on the spectral and dynamic properties. Three groups of mutants were found: some showed absorption features similar to the WT protein, a second group showed modified absorbance properties, and the third group had lost the ability to bind the chromophore. The most unexpected result was obtained for the exchange at residue 532 (N532Y). In vivo assembly yielded a red-absorbing, WT-like protein. Irradiation, however, not only converted it into the greenabsorbing form, but also produced a 660 nm, further-red-shifted absorbance band. This photoproduct was fully reversible to the parental form upon green light irradiation.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Wiley VCH Verlag  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Chromophores  
dc.subject
Global Fit  
dc.subject
Mutagenesis  
dc.subject
Phycocyanobilin  
dc.subject
Phytochromes  
dc.subject
Time Resolved  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Combined Mutagenesis and Kinetics Characterization of the Bilin-Binding GAF Domain of the Protein Slr1393 from the Cyanobacterium Synechocystis PCC6803  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-01-16T18:24:32Z  
dc.identifier.eissn
1439-7633  
dc.journal.volume
15  
dc.journal.number
8  
dc.journal.pagination
1190-1199  
dc.journal.pais
Alemania  
dc.journal.ciudad
Weinheim  
dc.description.fil
Fil: Xu, Xiu Ling. Max-Planck-Institute for Chemical Energy Conversion; Alemania  
dc.description.fil
Fil: Gutt, Alexander. Max-Planck-Institute for Chemical Energy Conversion; Alemania  
dc.description.fil
Fil: Mechelke, Jonas. Max-Planck-Institute for Chemical Energy Conversion; Alemania  
dc.description.fil
Fil: Raffelberg, Sarah. Max-Planck-Institute for Chemical Energy Conversion; Alemania  
dc.description.fil
Fil: Tang, Kun. Max-Planck-Institute for Chemical Energy Conversion; Alemania. Huazhong Agricultural University; República de China  
dc.description.fil
Fil: Miao, Dan. Huazhong Agricultural University; República de China  
dc.description.fil
Fil: Valle, Lorena. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Santiago del Estero. Universidad Nacional de Santiago del Estero. Centro de Investigaciones y Transferencia de Santiago del Estero; Argentina. Universidad Nacional de Santiago del Estero. Facultad de Agronomía y Agroindustrias; Argentina  
dc.description.fil
Fil: Borsarelli, Claudio Darío. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigaciones y Transferencia de Santiago del Estero. Universidad Nacional de Santiago del Estero. Centro de Investigaciones y Transferencia de Santiago del Estero; Argentina. Universidad Nacional de Santiago del Estero. Facultad de Agronomía y Agroindustrias; Argentina  
dc.description.fil
Fil: Zhao, Kai Hong. Huazhong Agricultural University; República de China  
dc.description.fil
Fil: Gärtner, Wolfgang. Max-Planck-Institute for Chemical Energy Conversion; Alemania  
dc.journal.title
Chembiochem  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1002/cbic.201400053  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/onlinelibrary.wiley.com/doi/10.1002/cbic.201400053/abstract