Artículo
Stone style duality for distributive nearlattices
Fecha de publicación:
01/2014
Editorial:
Springer
Revista:
Algebra Universalis
ISSN:
0002-5240
e-ISSN:
1420-8911
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
The aim of this paper is to study the variety of distributive nearlattices with greatest element. We will define the class of N-spaces as sober-like topological spaces with a basis of open, compact, and dually compact subsets satisfying an additional condition. We will show that the category of distributive nearlattices with greatest element whose morphisms are semi-homomorphisms is dually equivalent to the category of N-spaces with certain relations, called N-relations. In particular, we give a duality for the category of distributive nearlattices with homomorphisms. Finally, we apply these results to characterize topologically the one-to-one and onto homomorphisms, the subalgebras, and the lattice of the congruences of a distributive nearlattice.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Celani, Sergio Arturo; Calomino, Ismael Maria; Stone style duality for distributive nearlattices; Springer; Algebra Universalis; 71; 2; 1-2014; 127-153
Compartir
Altmétricas