Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Analysis of stability, verification and chaos with the Kreiss-Yström equations

Fullmer, William D.; López de Bertodano, Martin A.; Chen, Min; Clausse, AlejandroIcon
Fecha de publicación: 10/2014
Editorial: Elsevier Inc
Revista: Applied Mathematics and Computation
ISSN: 0096-3003
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ingeniería Mecánica

Resumen

A system of two coupled PDEs originally proposed and studied by Kreiss and Yström (2002), which is dynamically similar to a one-dimensional two-fluid model of two-phase flow, is investigated here. It is demonstrated that in the limit of vanishing viscosity (i.e., neglecting second-order and higher derivatives), the system possesses complex eigenvalues and is therefore ill-posed. The regularized problem (i.e., including viscous second-order derivatives) retains the long-wavelength linear instability but with a cut-off wavelength, below which the system is linearly stable and dissipative. A second-order accurate numerical scheme, which is verified using the method of manufactured solutions, is used to simulate the system. For short to intermediate periods of time, numerical solutions compare favorably to those published previously by the original authors. However, the solutions at a later time are considerably different and have the properties of chaos. To quantify the chaos, the largest Lyapunov exponent is calculated and found to be approximately 0.38. Additionally, the correlation dimension of the attractor is assessed, resulting in a fractal dimension of 2.8 with an embedded dimension of approximately 6. Subsequently, the route to chaos is qualitatively explored with investigations of asymptotic stability, traveling-wave limit cycles and intermittency. Finally, the numerical solution, which is grid-dependent in space–time for long times, is demonstrated to be convergent using the time-averaged amplitude spectra.
Palabras clave: Two-Fluid Model , Ill Poseness , Chaos
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 2.961Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/33278
DOI: http://dx.doi.org/10.1016/j.amc.2014.09.074
URL: http://www.sciencedirect.com/science/article/pii/S0096300314012995
Colecciones
Articulos(CCT - TANDIL)
Articulos de CTRO CIENTIFICO TECNOLOGICO CONICET - TANDIL
Citación
Chen, Min; Clausse, Alejandro; López de Bertodano, Martin A.; Fullmer, William D.; Analysis of stability, verification and chaos with the Kreiss-Yström equations; Elsevier Inc; Applied Mathematics and Computation; 248; 10-2014; 28-46
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES