Mostrar el registro sencillo del ítem

dc.contributor.author
Candia, Julián Marcelo  
dc.contributor.author
Banavar, Jayanth R  
dc.contributor.author
Losert, Wolfgang  
dc.date.available
2018-01-12T20:02:55Z  
dc.date.issued
2014-01  
dc.identifier.citation
Candia, Julián Marcelo; Banavar, Jayanth R; Losert, Wolfgang; Understanding health and disease with multidimensional single-cell methods; IOP Publishing; Journal of Physics: Condensed Matter; 26; 7; 1-2014; 1-21  
dc.identifier.issn
0953-8984  
dc.identifier.uri
http://hdl.handle.net/11336/33172  
dc.description.abstract
Current efforts in the biomedical sciences and related interdisciplinary fields are focused ongaining a molecular understanding of health and disease, which is a problem of dauntingcomplexity that spans many orders of magnitude in characteristic length scales, from smallmolecules that regulate cell function to cell ensembles that form tissues and organs workingtogether as an organism. In order to uncover the molecular nature of the emergent properties of acell, it is essential to measure multiple cell components simultaneously in the same cell. In turn,cell heterogeneity requires multiple cells to be measured in order to understand health and diseasein the organism. This review summarizes current efforts towards a data-driven framework thatleverages single-cell technologies to build robust signatures of healthy and diseased phenotypes.While some approaches focus on multicolor flow cytometry data and other methods are designedto analyze high-content image-based screens, we emphasize the so-called Supercell/SVMparadigm (recently developed by the authors of this review and collaborators) as a unifiedframework that captures mesoscopic-scale emergence to build reliable phenotypes. Beyond theirspecific contributions to basic and translational biomedical research, these efforts illustrate, from alarger perspective, the powerful synergy that might be achieved from bringing together methodsand ideas from statistical physics, data mining, and mathematics to solve the most pressingproblems currently facing the life sciences.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
IOP Publishing  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Single-Cell Biophysics  
dc.subject
Complexity  
dc.subject
Flow Cytometry  
dc.subject
Cell Imaging  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Understanding health and disease with multidimensional single-cell methods  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-01-03T19:03:43Z  
dc.journal.volume
26  
dc.journal.number
7  
dc.journal.pagination
1-21  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Londres  
dc.description.fil
Fil: Candia, Julián Marcelo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Física de Líquidos y Sistemas Biológicos. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Física de Líquidos y Sistemas Biológicos; Argentina. University of Maryland; Estados Unidos  
dc.description.fil
Fil: Banavar, Jayanth R. University of Maryland; Estados Unidos  
dc.description.fil
Fil: Losert, Wolfgang. University of Maryland; Estados Unidos  
dc.journal.title
Journal of Physics: Condensed Matter  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1088/0953-8984/26/7/073102  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://iopscience.iop.org/article/10.1088/0953-8984/26/7/073102/meta  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4020281/