Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Composite Retrieval of Diverse and Complementary Bundles

Amer Yahia, Sihem; Bonchi, Francesco; Castillo, Carlos; Feuerstein, Esteban Zindel; Méndez-Díaz, Isabel; Zabala, Paula LorenaIcon
Fecha de publicación: 11/2014
Editorial: IEEE Computer Society
Revista: Ieee Transactions On Knowledge And Data Engineering
ISSN: 1041-4347
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Users are often faced with the problem of finding complementary items that together achieve a single common goal (e.g., a starter kit for a novice astronomer, a collection of question/answers related to low-carb nutrition, a set of places to visit on holidays). In this paper, we argue that for some application scenarios returning item bundles is more appropriate than ranked lists. Thus we define composite retrieval as the problem of finding k bundles of complementary items. Beyond complementarity of items, the bundles must be valid w.r.t. a given budget, and the answer set of k bundles must exhibit diversity. We formally define the problem and show that in its general form is NP-hard and that also the special cases in which each bundle is formed by only one item, or only one bundle is sought, are hard. Our characterization however suggests how to adopt a two-phase approach (Produce-and-Choose, or PAC) in which we first produce many valid bundles, and then we choose k among them. For the first phase we devise two ad-hoc clustering algorithms, while for the second phase we adapt heuristics with approximation guarantees for a related problem. We also devise another approach which is based on first finding a k-clustering and then selecting a valid bundle from each of the produced clusters (Cluster-and-Pick, or CAP). We compare experimentally the proposed methods on two real-world data sets: the first data set is given by a sample of touristic attractions in 10 large European cities, while the second is a large database of user-generated restaurant reviews from Yahoo! Local. Our experiments show that when diversity is highly important, CAP is the best option, while when diversity is less important, a PAC approach constructing bundles around randomly chosen pivots, is better.
Palabras clave: Composite Retrieval , Complementarity , Diversity , Maximun Edge Subgraph
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 1.579Mb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/33093
DOI: http://dx.doi.org/10.1109/TKDE.2014.2306678
URL: http://ieeexplore.ieee.org/document/6742606/
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Bonchi, Francesco; Castillo, Carlos; Zabala, Paula Lorena; Amer Yahia, Sihem; Feuerstein, Esteban Zindel; Méndez-Díaz, Isabel; et al.; Composite Retrieval of Diverse and Complementary Bundles; IEEE Computer Society; Ieee Transactions On Knowledge And Data Engineering; 26; 11; 11-2014; 2662-2675
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES