Artículo
On the normality of numbers to different bases
Fecha de publicación:
07/2014
Editorial:
Wiley
Revista:
Proceedings of the London Mathematical Society
ISSN:
0024-6115
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We demonstrate the full logical independence of normality to multiplicatively independent bases. This establishes that the set of bases to which a real number can be normal is not tied to any arithmetical properties other than multiplicative dependence. It also establishes that the set of real numbers which are normal to at least one base is properly at the fourth level of the Borel hierarchy, which was conjectured by A. Ditzen 20 years ago. We further show that the discrepancy functions for multiplicatively independent bases are pairwise independent. In addition, for any given set of bases closed under multiplicative dependence, there are real numbers that are normal to each base in the given set, but not simply normal to any base in its complement. This answers a question first raised by Brown, Moran and Pearce.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Becher, Veronica Andrea; Slaman, Theodore A.; On the normality of numbers to different bases; Wiley; Proceedings of the London Mathematical Society; 90; 2; 7-2014; 472-494
Compartir
Altmétricas