Artículo
Split partial isometries
Fecha de publicación:
08/2013
Editorial:
Birkhauser Verlag Ag
Revista:
Complex Analysis And Operator Theory
ISSN:
1661-8254
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
A partial isometry V is said to be a split partial isometry if H = R(V) + N(V), with R(V)∩ N(V ) = {0} (R(V) = range of V, N(V ) = null-space of V).We study the topological properties of the set I0 of such partial isometries. Denote by I the set of all partial isometries of B(H), and by IN the set of normal partial isometries. Then IN ⊂ I0 ⊂ I, and the inclusions are proper. It is known that I is a C∞-submanifold of B(H). It is shown here that I0 is open in I, therefore is has also C∞-local structure. We characterize the set I0, in terms of metric properties, existence of special pseudoinverses, and a property of the spectrum and the resolvent of V. The connected components of I0 are characterized: V0, V1 ∈ I0 lie in the same connected component if and only if dim R(V0) = dim R(V1) and dim R(V0)⊥ = dim R(V1)⊥.
Palabras clave:
Partial Isometries
,
Projections
,
Idempotents
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Andruchow, Esteban; Corach, Gustavo; Mbekhta, Mostafa; Split partial isometries; Birkhauser Verlag Ag; Complex Analysis And Operator Theory; 7; 8-2013; 813-829
Compartir
Altmétricas