Artículo
Nichols algebras over groups with finite root system of rank two II
Fecha de publicación:
05/2014
Editorial:
De Gruyter
Revista:
Journal Of Group Theory
ISSN:
1433-5883
e-ISSN:
1435-4446
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We classify all non-abelian groups G for which there exists a pair (V,W) of absolutely simple Yetter–Drinfeld modules over G such that the Nichols algebra of the direct sum of V and W is finite-dimensional, under two assumptions: the square of the braiding between V and W is not the identity, and G is generated by the support of V and W. As a corollary, we prove that the dimensions of such V and W are at most six. As a tool we use the Weyl groupoid of (V,W).
Palabras clave:
Nichols Algebras
,
Weyl Groupoids
,
Root Systems
,
Hopf Algebras
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Heckenberger, István; Vendramin, Claudio Leandro; Nichols algebras over groups with finite root system of rank two II; De Gruyter; Journal Of Group Theory; 17; 6; 5-2014; 1009-1034
Compartir
Altmétricas