Artículo
Extensions of Jacobson's Lemma
Fecha de publicación:
01/2013
Editorial:
Taylor
Revista:
Communications In Algebra
ISSN:
0092-7872
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Jacobson’s Lemma says that if a c ∈ A thenac − 1 ∈ A−1 ⇐⇒ ca − 1 ∈ A−1 which holds separately for the left and the right invertibles of A, as well as for the non zero-divisors of A. In this note, we generalize the identity above and many of its relatives from ca − 1 to certain ba − 1: specifically we will suppose aba = aca. Three special cases are of interest: the case b = c which will give Jacobson’s lemma; the case in which aba = aca = a in which both b and c are generalized inverses of a ∈ A; and the case aba = a^2 in which c = 1. This last case goes back to Vidav; in particular, Schmoeger shows that aba=a^2 holds if there are idempotents p = p^2 q = q^2 for which a = qp and b = pq. The central results in this note are of course pure algebra: but in the neighboring realm of topological algebra they have very close relatives, and we take the opportunity to extend our purely algebraic observations to their topological analogues.
Palabras clave:
Jacobson'S Lemma
,
Operator
,
Resolvent
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IAM)
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos de INST.ARG.DE MATEMATICAS "ALBERTO CALDERON"
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Citación
Corach, Gustavo; Duggal, Bhaggy ; Harte, Robin; Extensions of Jacobson's Lemma; Taylor; Communications In Algebra; 41; 1-2013; 520-531
Compartir
Altmétricas