Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Pebbling in Split Graphs

Alcón, Liliana Graciela; Gutierrez, MarisaIcon ; Hurlbert, Glenn
Fecha de publicación: 08/2014
Editorial: Society for Industrial and Applied Mathematics
Revista: Siam Journal On Discrete Mathematics
ISSN: 0895-4801
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Matemática Pura

Resumen

Graph pebbling is a network optimization model for transporting discrete resourcesthat are consumed in transit: the movement of 2 pebbles across an edge consumes one of thepebbles. The pebbling number of a graph is the fewest number of pebblestso that, from anyinitial configuration oftpebbles on its vertices, one can place a pebble on any given target vertex viasuch pebbling steps. It is known that deciding whether a given configuration on a particular graphcan reach a specified target isNP-complete, even for diameter 2 graphs, and that deciding whetherthe pebbling number has a prescribed upper bound is ΠP2-complete. On the other hand, for manyfamilies of graphs there are formulas or polynomial algorithms for computing pebbling numbers; forexample, complete graphs, products of paths (including cubes), trees, cycles, diameter 2 graphs, andmore. Moreover, graphs having minimum pebbling number are called Class 0, and many authors havestudied which graphs are Class 0 and what graph properties guarantee it, with no characterizationin sight. In this paper we investigate an important family of diameter 3 chordal graphs called splitgraphs; graphs whose vertex set can be partitioned into a clique and an independent set. We provide aformula for the pebbling number of a split graph, along with an algorithm for calculating it that runsinO(nβ) time, whereβ=2ω/(ω+1)∼=1.41 andω∼=2.376 is the exponent of matrix multiplication.Furthermore we determine that all split graphs with minimum degree at least 3 are Class 0.
Palabras clave: Pebbling Number , Split Graphs , Class 0 , Graph Algorithms , Complexity
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 452.8Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial-ShareAlike 2.5 Unported (CC BY-NC-SA 2.5)
Identificadores
URI: http://hdl.handle.net/11336/32989
DOI: http://dx.doi.org/10.1137/130914607
URL: http://epubs.siam.org/doi/10.1137/130914607
Colecciones
Articulos(CCT - LA PLATA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - LA PLATA
Citación
Hurlbert, Glenn; Gutierrez, Marisa; Alcón, Liliana Graciela; Pebbling in Split Graphs; Society for Industrial and Applied Mathematics; Siam Journal On Discrete Mathematics; 28; 3; 8-2014; 1449-1466
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES