Artículo
Model predictive control to ensure high quality hydrogen production for fuel cells
Rullo, Pablo Gabriel
; Nieto Degliuomini, Lucas
; García, Maximiliano Pablo
; Basualdo, Marta Susana
Fecha de publicación:
01/2014
Editorial:
Elsevier
Revista:
International Journal of Hydrogen Energy
ISSN:
0360-3199
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this work, a conventional plant wide control of a hydrogen production process from bioethanol is analyzed. The objective is to determine if the carbon monoxide (CO), in the produced hydrogen, exceeds the Proton Exchange Membrane Fuel Cell quality requirement of 10 ppm. Commercial sensors that meet those process conditions at high temperature are not easily available. Then, the development of two soft sensors, based on neural network, for online estimation of CO concentration in the H2 stream is presented. Higher CO concentration than allowed is detected in the fuel cell feeding. Strong interaction effects among the control loops around the last reactor, are found. Based on this, two model predictive control technologies are tested and compared in this interacted zone, in order to improve the disturbance rejection and satisfy the H2 expected quality. An exigent disturbance profile was used for simulating dynamically the complete process behavior.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Basualdo, Marta Susana; García, Maximiliano Pablo; Nieto Degliuomini, Lucas; Rullo, Pablo Gabriel; Model predictive control to ensure high quality hydrogen production for fuel cells; Elsevier; International Journal of Hydrogen Energy; 39; 16; 1-2014; 8635-8649
Compartir
Altmétricas