Mostrar el registro sencillo del ítem

dc.contributor.author
Garces Correa, Maria Agustina  
dc.contributor.author
Orosco, Lorena Liliana  
dc.contributor.author
Laciar Leber, Eric  
dc.date.available
2018-01-09T20:30:12Z  
dc.date.issued
2013-08  
dc.identifier.citation
Orosco, Lorena Liliana; Garces Correa, Maria Agustina; Laciar Leber, Eric; Automatic detection of drowsiness in EEG records based on multimodal analysis; Elsevier; Medical Engineering & Physics; 36; 2; 8-2013; 244-249  
dc.identifier.issn
1350-4533  
dc.identifier.uri
http://hdl.handle.net/11336/32750  
dc.description.abstract
Drowsiness is one of the main causal factors in many traffic accidents due to the clear decline in the attention and recognition of danger drivers, diminishing vehicle-handling abilities. The aim of this research is to develop an automatic method to detect the drowsiness stage in EEG records using time, spectral and wavelet analysis. A total of 19 features were computed from only one EEG channel to differentiate the alertness and drowsiness stages. After a selection process based on lambda of Wilks criterion, 7 parameters were chosen to feed a Neural Network classifier. Eighteen EEG records were analyzed. The method gets 87.4% and 83.6% of alertness and drowsiness correct detections rates, respectively. The results obtained indicate that the parameters can differentiate both stages. The features are easy to calculate and can be obtained in real time. Those variables could be used in an automatic drowsiness detection system in vehicles, thereby decreasing the rate of accidents caused by sleepiness of the driver.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Drowsiness  
dc.subject
Alert  
dc.subject
Eeg  
dc.subject
Wavelet  
dc.subject
Neural Networks  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
Ingeniería Médica  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Otras Ciencias Físicas  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Automatic detection of drowsiness in EEG records based on multimodal analysis  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-01-08T19:48:26Z  
dc.journal.volume
36  
dc.journal.number
2  
dc.journal.pagination
244-249  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Ámsterdam  
dc.description.fil
Fil: Garces Correa, Maria Agustina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Orosco, Lorena Liliana. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.journal.title
Medical Engineering & Physics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1350453313001690  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.medengphy.2013.07.011