Mostrar el registro sencillo del ítem
dc.contributor.author
Garces Correa, Maria Agustina
dc.contributor.author
Orosco, Lorena Liliana
dc.contributor.author
Laciar Leber, Eric
dc.date.available
2018-01-09T20:30:12Z
dc.date.issued
2013-08
dc.identifier.citation
Orosco, Lorena Liliana; Garces Correa, Maria Agustina; Laciar Leber, Eric; Automatic detection of drowsiness in EEG records based on multimodal analysis; Elsevier; Medical Engineering & Physics; 36; 2; 8-2013; 244-249
dc.identifier.issn
1350-4533
dc.identifier.uri
http://hdl.handle.net/11336/32750
dc.description.abstract
Drowsiness is one of the main causal factors in many traffic accidents due to the clear decline in the attention and recognition of danger drivers, diminishing vehicle-handling abilities. The aim of this research is to develop an automatic method to detect the drowsiness stage in EEG records using time, spectral and wavelet analysis. A total of 19 features were computed from only one EEG channel to differentiate the alertness and drowsiness stages. After a selection process based on lambda of Wilks criterion, 7 parameters were chosen to feed a Neural Network classifier. Eighteen EEG records were analyzed. The method gets 87.4% and 83.6% of alertness and drowsiness correct detections rates, respectively. The results obtained indicate that the parameters can differentiate both stages. The features are easy to calculate and can be obtained in real time. Those variables could be used in an automatic drowsiness detection system in vehicles, thereby decreasing the rate of accidents caused by sleepiness of the driver.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Drowsiness
dc.subject
Alert
dc.subject
Eeg
dc.subject
Wavelet
dc.subject
Neural Networks
dc.subject.classification
Ingeniería Médica
dc.subject.classification
Ingeniería Médica
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS
dc.subject.classification
Otras Ciencias Físicas
dc.subject.classification
Ciencias Físicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Automatic detection of drowsiness in EEG records based on multimodal analysis
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2018-01-08T19:48:26Z
dc.journal.volume
36
dc.journal.number
2
dc.journal.pagination
244-249
dc.journal.pais
Países Bajos
dc.journal.ciudad
Ámsterdam
dc.description.fil
Fil: Garces Correa, Maria Agustina. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Orosco, Lorena Liliana. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.description.fil
Fil: Laciar Leber, Eric. Universidad Nacional de San Juan. Facultad de Ingeniería. Departamento de Electrónica y Automática. Gabinete de Tecnología Médica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina
dc.journal.title
Medical Engineering & Physics
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1350453313001690
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.medengphy.2013.07.011
Archivos asociados