Mostrar el registro sencillo del ítem

dc.contributor.author
Krause, Gustavo Javier  
dc.contributor.author
Elaskar, Sergio Amado  
dc.contributor.author
Costa, Andrea  
dc.date.available
2018-01-03T22:09:33Z  
dc.date.issued
2014-04  
dc.identifier.citation
Costa, Andrea; Elaskar, Sergio Amado; Krause, Gustavo Javier; Chaos and Intermittency in the DNLS Equation Describing the Parallel Alfvén Wave Propagation; Hindawi Publishing Corporation; Journal of Astrophysics; 2014; 4-2014; 1-15; 812052  
dc.identifier.issn
2356-718X  
dc.identifier.uri
http://hdl.handle.net/11336/32257  
dc.description.abstract
When the Hall effect is included in the magnetohydrodynamics equations (Hall-MHD model) the wave propagation modes become coupled, but for propagation parallel to the ambient magnetic field the Alfvén mode decouples from the magnetosonic ones, resulting in circularly polarized waves that are described by the derivative nonlinear Schrödinger (DNLS) equation. In this paper, the DNLS equation is numerically solved using spectral methods for the spatial derivatives and a fourth order Runge-Kutta scheme for time integration. Firstly, the nondiffusive DNLS equation is considered to test the validity of the method by verifying the analytical condition of modulational stability. Later, diffusive and excitatory effects are incorporated to compare the numerical results with those obtained by a three-wave truncation model. The results show that different types of attractors can exist depending on the diffusion level: for relatively large damping, there are fixed points for which the truncation model is a good approximation; for low damping, chaotic solutions appear and the three-wave truncation model fails due to the emergence of new nonnegligible modes.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Hindawi Publishing Corporation  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Dnls Equation  
dc.subject
Spectral Methods  
dc.subject
Truncation Method  
dc.subject
Alfvén Waves  
dc.subject.classification
Astronomía  
dc.subject.classification
Ciencias Físicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Chaos and Intermittency in the DNLS Equation Describing the Parallel Alfvén Wave Propagation  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2018-01-03T20:12:38Z  
dc.journal.volume
2014  
dc.journal.pagination
1-15; 812052  
dc.journal.pais
Egipto  
dc.journal.ciudad
El Cairo  
dc.description.fil
Fil: Krause, Gustavo Javier. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Elaskar, Sergio Amado. Universidad Nacional de Córdoba. Facultad de Ciencias Exactas, Físicas y Naturales. Departamento de Aeronáutica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; Argentina  
dc.description.fil
Fil: Costa, Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Astronomia Teórica y Experimental. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba. Instituto de Astronomia Teórica y Experimental; Argentina  
dc.journal.title
Journal of Astrophysics  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1155/2014/812052  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://www.hindawi.com/journals/jas/2014/812052/