Mostrar el registro sencillo del ítem
dc.contributor.author
Novitskaya, E.
dc.contributor.author
Ruestes, Carlos Javier

dc.contributor.author
Porter, M. M.
dc.contributor.author
Lubarda, V. A.
dc.contributor.author
Meyers, Marc A.

dc.contributor.author
McKittrick, J.
dc.date.available
2018-01-03T21:24:42Z
dc.date.issued
2017-07
dc.identifier.citation
McKittrick, J.; Meyers, Marc A.; Lubarda, V. A.; Porter, M. M.; Ruestes, Carlos Javier; Novitskaya, E.; et al.; Reinforcements in avian wing bones: Experiments, analysis, and modeling; Elsevier; Journal Of The Mechanical Behavior Of Biomedical Materials; 76; 7-2017; 85-96
dc.identifier.issn
1751-6161
dc.identifier.uri
http://hdl.handle.net/11336/32240
dc.description.abstract
Almost all species of modern birds are capable of flight; the mechanical competency of their wings and the rigidity of their skeletal system evolved to enable this outstanding feat. One of the most interesting examples of structural adaptation in birds is the internal structure of their wing bones. In flying birds, bones need to be sufficiently strong and stiff to withstand forces during takeoff, flight, and landing, with a minimum of weight. The cross-sectional morphology and presence of reinforcing structures (struts and ridges) found within bird wing bones vary from species to species, depending on how the wings are utilized. It is shown that both morphology and internal features increases the resistance to flexure and torsion with a minimum weight penalty. Prototypes of reinforcing struts fabricated by 3D printing were tested in diametral compression and torsion to validate the concept. In compression, the ovalization decreased through the insertion of struts, while they had no effect on torsional resistance. An elastic model of a circular ring reinforced by horizontal and vertical struts is developed to explain the compressive stiffening response of the ring caused by differently oriented struts.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Elsevier

dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
3d Printing
dc.subject
Mechanical Properties
dc.subject
Micro-Computed Tomography
dc.subject
Strut
dc.subject
Vulture Bone
dc.title
Reinforcements in avian wing bones: Experiments, analysis, and modeling
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-12-19T18:37:54Z
dc.journal.volume
76
dc.journal.pagination
85-96
dc.journal.pais
Países Bajos

dc.journal.ciudad
Ámsterdam
dc.description.fil
Fil: Novitskaya, E.. University of California at San Diego; Estados Unidos
dc.description.fil
Fil: Ruestes, Carlos Javier. University of California at San Diego; Estados Unidos. Universidad Nacional de Cuyo; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mendoza; Argentina
dc.description.fil
Fil: Porter, M. M.. University of California at San Diego; Estados Unidos. Clemson University. Department of Mechanical Engineering; Estados Unidos
dc.description.fil
Fil: Lubarda, V. A.. University of California at San Diego; Estados Unidos
dc.description.fil
Fil: Meyers, Marc A.. University of California at San Diego; Estados Unidos
dc.description.fil
Fil: McKittrick, J.. University of California at San Diego; Estados Unidos
dc.journal.title
Journal Of The Mechanical Behavior Of Biomedical Materials

dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.jmbbm.2017.07.020
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S1751616117303065
Archivos asociados