Artículo
On the theorem of the primitive element with applications to the representation theory of associative and Lie algebras
Fecha de publicación:
12/2014
Editorial:
Canadian Mathematical Soc
Revista:
Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques
ISSN:
0008-4395
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We describe of all finite dimensional uniserial representations of a commutative associative (resp. abelian Lie) algebra over a perfect (resp. sufficiently large perfect) field. In the Lie case the size of the field depends on the answer to following question, considered and solved in this paper. Let $K/F$ be a finite separable field extension and let $x,yin K$. When is $F[x,y]=F[alpha x+eta y]$ for some non-zero elements $alpha,etain F$?
Palabras clave:
Uniserial Module
,
Lie Algebra
,
Associative Algebra
,
Primitive Element
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Cagliero, Leandro Roberto; Szchetman, Fernando; On the theorem of the primitive element with applications to the representation theory of associative and Lie algebras; Canadian Mathematical Soc; Canadian Mathematical Bulletin-bulletin Canadien de Mathematiques; 57; 12-2014; 735-748
Compartir