Mostrar el registro sencillo del ítem

dc.contributor.author
Lauret, Jorge Ruben  
dc.date.available
2018-01-03T18:19:25Z  
dc.date.issued
2014-12  
dc.identifier.citation
Lauret, Jorge Ruben; Curvature flows for almost-hermitian Lie groups; American Mathematical Society; Transactions Of The American Mathematical Society; 367; 12-2014; 7453-7480  
dc.identifier.issn
0002-9947  
dc.identifier.uri
http://hdl.handle.net/11336/32139  
dc.description.abstract
We study curvature flows in the locally homogeneous case (e.g. compact quotients of Lie groups, solvmanifolds, nilmanifolds) in a unified way, by considering a generic flow under just a few natural conditions on the broad class of almost-hermitian structures. As a main tool, we use an ODE system defined on the variety of 2n-dimensional Lie algebras, called the bracket flow, whose solutions differ from those to the original curvature flow by only pull-back by time-dependent diffeomorphisms. The approach, which has already been used to study the Ricci flow on homogeneous manifolds, is useful to better visualize the possible pointed limits of solutions, under diverse rescalings, as well as to address regularity issues. Immortal, ancient and self-similar solutions arise naturally from the qualitative analysis of the bracket flow. The Chern-Ricci flow and the symplectic curvature flow are considered in more detail.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Mathematical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Curvature  
dc.subject
Flow  
dc.subject
Almost-Hermitian  
dc.subject
Lie Groups  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Curvature flows for almost-hermitian Lie groups  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-12-26T20:39:50Z  
dc.journal.volume
367  
dc.journal.pagination
7453-7480  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
Providence  
dc.description.fil
Fil: Lauret, Jorge Ruben. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.journal.title
Transactions Of The American Mathematical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://arxiv.org/abs/1306.5931