Artículo
The Spherical Transform Associated with the Generalized Gelfand Pair (U(p,q),Hn), p+q=n
Fecha de publicación:
09/2014
Editorial:
Heldermann Verlag
Revista:
Journal Of Lie Theory
ISSN:
0949-5932
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We denote by $H_{n}$ the $2n+1$-dimensional Heisenberg group and study the spherical transform associated with the generalized Gelfand pair $(U(p,q) \rtimes H_{n},U(p,q))$, $p+q=n$, which is defined on the space of Schwartz functions on $H_{n}$, and we characterize its image. In order to do that, since the spectrum associated to this pair can be identified with a subset $\Sigma$ of the plane, we introduce a space ${\cal H}_{n}$ of functions defined on $\mathbb{R}^2$ and we prove that a function defined on $\Sigma$ lies in the image if and only if it can be extended to a function in ${\cal H}_{n}$. In particular, the spherical transform of a Schwartz function $f$ on $H_{n}$ admits a Schwartz extension on the plane if and only if its restriction to the vertical axis lies in ${\cal S}(\mathbb{R})$.
Palabras clave:
Heisenberg Group
,
Spherical Transform
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Saal, Linda Victoria; Campos, Silvina Mabel; The Spherical Transform Associated with the Generalized Gelfand Pair (U(p,q),Hn), p+q=n ; Heldermann Verlag; Journal Of Lie Theory; 24; 3; 9-2014; 657-685
Compartir