Artículo
Explicit matrix inverses for lower triangular matrices with entries involving Jacobi polynomials
Fecha de publicación:
04/2014
Editorial:
Academic Press Inc Elsevier Science
Revista:
Journal Of Approximation Theory
ISSN:
0021-9045
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
For a two-parameter family of lower triangular matrices with entries involving Jacobi polynomials an explicit inverse is given, with entries involving a sum of two Jacobi polynomials. The formula simplifies in the Gegenbauer case and then one choice of the parameter solves an open problem in a recent paper by Koelink, van Pruijssen & Román. The two-parameter family is closely related to two two-parameter groups of lower triangular matrices, of which we also give the explicit generators. Another family of pairs of mutually inverse lower triangular matrices with entries involving Jacobi polynomials, unrelated to the family just mentioned, was given by J. Koekoek & R. Koekoek (1999). We show that this last family is a limit case of a pair of connection relations between Askey–Wilson polynomials having one of their four parameters in common.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIEM)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Articulos de CENT.INV.Y ESTUDIOS DE MATEMATICA DE CORDOBA(P)
Citación
Koornwinder, Tom H.; Cagliero, Leandro Roberto; Explicit matrix inverses for lower triangular matrices with entries involving Jacobi polynomials; Academic Press Inc Elsevier Science; Journal Of Approximation Theory; 193; 4-2014; 20-38
Compartir
Altmétricas