Mostrar el registro sencillo del ítem

dc.contributor.author
Haimovich, Hernan  
dc.contributor.author
Serón, María Marta  
dc.date.available
2015-12-23T14:59:52Z  
dc.date.issued
2013-03  
dc.identifier.citation
Haimovich, Hernan; Serón, María Marta; Bounds and invariant sets for a class of switching systems with delayed-state-dependent perturbations; Elsevier; Automatica; 49; 3; 3-2013; 748-754  
dc.identifier.issn
0005-1098  
dc.identifier.uri
http://hdl.handle.net/11336/3201  
dc.description.abstract
We present a novel method to compute componentwise transient bounds, componentwise ultimate bounds, and invariant regions for a class of switching continuous-time linear systems with perturbation bounds that may depend nonlinearly on a delayed state. The main advantage of the method is its componentwise nature, i.e. the fact that it allows each component of the perturbation vector to have an independent bound and that the bounds and sets obtained are also given componentwise. This componentwise method does not employ a norm for bounding either the perturbation or state vectors, avoids the need for scaling the different state vector components in order to obtain useful results, and may also reduce conservativeness in some cases. The present paper builds upon and extends to switching systems with delayed-state-dependent perturbations previous results by the authors. In this sense, the contribution is three-fold: the derivation of the aforementioned extension; the elucidation of the precise relationship between the class of switching linear systems to which the proposed method can be applied and those that admit a common quadratic Lyapunov function (a question that was left open in our previous work); and the derivation of a technique to compute a common quadratic Lyapunov function for switching linear systems with perturbations bounded componentwise by affine functions of the absolute value of the state vector components. In this latter case, we also show how our componentwise method can be combined with standard techniques in order to derive bounds possibly tighter than those corresponding to either method applied individually.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-nd/2.5/ar/  
dc.subject
Switching Systems  
dc.subject
Ultimate Bounds  
dc.subject
Invariant Sets  
dc.subject
Componentwise Methods  
dc.subject.classification
Sistemas de Automatización y Control  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Control Automático y Robótica  
dc.subject.classification
Ingeniería Eléctrica, Ingeniería Electrónica e Ingeniería de la Información  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Bounds and invariant sets for a class of switching systems with delayed-state-dependent perturbations  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2016-03-30 10:35:44.97925-03  
dc.journal.volume
49  
dc.journal.number
3  
dc.journal.pagination
748-754  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Haimovich, Hernan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Rosario. Centro Internacional Franco Argentino de Ciencias de la Información y Sistemas; Argentina. Universidad Nacional de Rosario. Facultad de Ciencias Exactas, Ingeniería y Agrimensura. Escuela de Ingeniería Electrónica. Departamento de Control; Argentina  
dc.description.fil
Fil: Serón, María Marta. University of Newcastle; Reino Unido  
dc.journal.title
Automatica  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0005109812005092  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.automatica.2012.10.002