Artículo
Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies
Fecha de publicación:
04/2014
Editorial:
Elsevier Inc
Revista:
Journal of Computer and System Sciences
ISSN:
0022-0000
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
It is well-known that Independence Friendly (IF) logic is equivalent to existential secondorder logic (Σ1 1 ) and, therefore, is not closed under classical negation. The Boolean closure of IF sentences, called Extended IF-logic, on the other hand, corresponds to a proper fragment of 1 2. In this article we consider SL(↓), IF-logic extended with Hodges’ flattening operator ↓, which allows to define a classical negation. SL(↓) contains Extended IF-logic and hence it is at least as expressive as the Boolean closure of Σ1 1 . We prove that SL(↓) corresponds to a weak syntactic fragment of SO which we show to be strictly contained in 1 2. The separation is derived almost trivially from the fact that Σ1 n defines its own truth-predicate. We finally show that SL(↓) is equivalent to the logic of Henkin quantifiers, which shows, we argue, that Hodges’ notion of negation is adequate.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(OCA CIUDAD UNIVERSITARIA)
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos de OFICINA DE COORDINACION ADMINISTRATIVA CIUDAD UNIVERSITARIA
Articulos(SEDE CENTRAL)
Articulos de SEDE CENTRAL
Articulos de SEDE CENTRAL
Citación
Grimson, Rafael; Gorin, Daniel Alejadro; Figueira, Santiago; Independence friendly logic with classical negation via flattening is a second-order logic with weak dependencies; Elsevier Inc; Journal of Computer and System Sciences; 80; 6; 4-2014; 1102-1118
Compartir
Altmétricas