Artículo
Automatic classification of legumes using leaf vein image features
Larese, Monica Graciela
; Namias, Rafael
; Craviotto, Roque Mario; Arango, Miriam Raquel; Gallo, Carina del Valle; Granitto, Pablo Miguel
Fecha de publicación:
21/06/2013
Editorial:
Elsevier
Revista:
Pattern Recognition
ISSN:
0031-3203
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper, a procedure for segmenting and classifying scanned legume leaves based only on the analysis of their veins is proposed (leaf shape, size, texture and color are discarded). Three legume species are studied, namely soybean, red and white beans. The leaf images are acquired using a standard scanner. The segmentation is performed using the unconstrained hit-or-miss transform and adaptive thresholding. Several morphological features are computed on the segmented venation, and classified using four alternative classifiers, namely support vector machines (linear and Gaussian kernels), penalized discriminant analysis and random forests. The performance is compared to the one obtained with cleared leaves images, which require a more expensive, time consuming and delicate procedure of acquisition. The results are encouraging, showing that the proposed approach is an effective and more economic alternative solution which outperforms the manual expert's recognition.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Larese, Monica Graciela; Namias, Rafael; Craviotto, Roque Mario; Arango, Miriam Raquel; Gallo, Carina del Valle; et al.; Automatic classification of legumes using leaf vein image features; Elsevier; Pattern Recognition; 47; 1; 21-6-2013; 158-168
Compartir
Altmétricas