Artículo
Abrupt change detection with One-Class Time-Adaptive Support Vector Machines
Fecha de publicación:
15/12/2013
Editorial:
Elsevier
Revista:
Expert Systems with Applications
ISSN:
0957-4174
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We recently introduced an algorithm for training a sequence of coupled Support Vector Machines which shows promising results in the field of non-stationary classification problems Grinblat, Uzal, Ceccatto, and Granitto (2011). In this paper we analyze its application to the abrupt change detection problem. With this goal, we first introduce and analyze an extension of it to deal with the One-Class Support Vector Machine (OC-SVM) problem, and then discuss its use as an improved abrupt change detection method. Finally, we apply the proposed procedure to artificial and real-world examples, and demonstrate that it is competitive by comparison against other abrupt change detection methods.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Grinblat, Guillermo Luis; Uzal, Lucas César; Granitto, Pablo Miguel; Abrupt change detection with One-Class Time-Adaptive Support Vector Machines; Elsevier; Expert Systems with Applications; 40; 18; 15-12-2013; 7242-7249
Compartir
Altmétricas