Mostrar el registro sencillo del ítem

dc.contributor.author
Natale, Sonia Lujan  
dc.date.available
2018-01-02T13:43:55Z  
dc.date.issued
2014-01  
dc.identifier.citation
On weakly group-theoretical non-degenerate braided fusion categories; European Mathematical Society; Journal of Noncommutative Geometry; 8; 4; 1-2014; 1043-1060  
dc.identifier.issn
1661-6952  
dc.identifier.uri
http://hdl.handle.net/11336/31948  
dc.description.abstract
We show that the Witt class of a weakly group-theoretical non-degenerate braided fusion category belongs to the subgroup generated by classes of non-degenerate pointed braided fusion categories and Ising braided categories. This applies in particular to solvable nondegenerate braided fusion categories. We also give some sufficient conditions for a braided fusion category to be weakly group-theoretical or solvable in terms of the factorization of its Frobenius-Perron dimension and the Frobenius-Perron dimensions of its simple objects. As an application, we prove that every non-degenerate braided fusion category whose Frobenius-Perron dimension is a natural number less than 1800, or an odd natural number less than 33075, is weakly group-theoretical.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
European Mathematical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Braided Fusion Category  
dc.subject
Braidedg-Crossed Fusion Category  
dc.subject
Tannakian Category  
dc.subject
Witt Class  
dc.subject
Solvability  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On weakly group-theoretical non-degenerate braided fusion categories  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-12-26T20:37:19Z  
dc.journal.volume
8  
dc.journal.number
4  
dc.journal.pagination
1043-1060  
dc.journal.pais
Suiza  
dc.journal.ciudad
Zürich  
dc.description.fil
Fil: Natale, Sonia Lujan. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Centro de Investigación y Estudios de Matemática. Universidad Nacional de Córdoba. Centro de Investigación y Estudios de Matemática; Argentina  
dc.journal.title
Journal of Noncommutative Geometry  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/arxiv/https://arxiv.org/abs/1301.6078