Artículo
Pointwise convergence to initial data of heat and Laplace equations
Garrigos Aniorte, Gustavo; Hartzstein, Silvia Inés; Signes, Teresa; Torrea Hernández, José Luis; Viviani, Beatriz Eleonora
![Icon](/themes/CONICETDigital/images/conicet.png)
Fecha de publicación:
09/2016
Editorial:
American Mathematical Society
Revista:
Transactions Of The American Mathematical Society
ISSN:
0002-9947
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Let L be either the Hermite or the Ornstein-Uhlenbeck operator on Rd. We find optimal integrability conditions on a function f for the existence of its heat and Poisson integrals, e−tLf(x) and e−t √Lf(x), solutions respectively of Ut = −LU and Utt = LU on Rd+1 + with initial datum f. As a consequence we identify the most general class of weights v(x) for which such solutions converge a.e. to f for all f ∈ Lp(v), and each p ∈ [1,∞). Moreover, if 1 <p< ∞ we additionally show that for such weights the associated local maximal operators are strongly bounded from Lp(v) → Lp(u) for some other weight u(x).
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Viviani, Beatriz Eleonora; Torrea Hernández, José Luis; Signes, Teresa; Hartzstein, Silvia Inés; Garrigos Aniorte, Gustavo; Pointwise convergence to initial data of heat and Laplace equations; American Mathematical Society; Transactions Of The American Mathematical Society; 368; 9-2016; 6575-6600
Compartir
Altmétricas