Artículo
Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MS
Cappellin, Luca; Aprea, Eugenio; Granitto, Pablo Miguel
; Romano, Andrea; Gasperi, Flavia; Biasioli, Franco

Fecha de publicación:
11/2013
Editorial:
Elsevier
Revista:
Food Research International
ISSN:
0963-9969
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
Multiclass sample classification and marker selection are cutting-edge problems in metabolomics. In the present study we address the classification of 14 raspberry cultivars having different levels of gray mold (Botrytis cinerea) susceptibility. We characterized raspberry cultivars by two headspace analysis methods, namely solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton transfer reaction-mass spectrometry (PTR-MS). Given the high number of classes, advanced data mining methods are necessary. Random Forest (RF), Penalized Discriminant Analysis (PDA), Discriminant Partial Least Squares (dPLS) and Support Vector Machine (SVM) have been employed for cultivar classification and Random Forest-Recursive Feature Elimination (RF-RFE) has been used to perform feature selection. In particular the most important GC-MS and PTR-MS variables related to gray mold susceptibility of the selected raspberry cultivars have been investigated. Moving from GC-MS profiling to the more rapid and less invasive PTR-MS fingerprinting leads to a cultivar characterization which is still related to the corresponding Botrytis susceptibility level and therefore marker identification is still possible.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Cappellin, Luca; Aprea, Eugenio; Granitto, Pablo Miguel; Romano, Andrea; Gasperi, Flavia; et al.; Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MS; Elsevier; Food Research International; 54; 1; 11-2013; 1313-1320
Compartir
Altmétricas