Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MS

Cappellin, Luca; Aprea, Eugenio; Granitto, Pablo MiguelIcon ; Romano, Andrea; Gasperi, Flavia; Biasioli, Franco
Fecha de publicación: 11/2013
Editorial: Elsevier
Revista: Food Research International
ISSN: 0963-9969
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Alimentos y Bebidas

Resumen

Multiclass sample classification and marker selection are cutting-edge problems in metabolomics. In the present study we address the classification of 14 raspberry cultivars having different levels of gray mold (Botrytis cinerea) susceptibility. We characterized raspberry cultivars by two headspace analysis methods, namely solid-phase microextraction/gas chromatography-mass spectrometry (SPME/GC-MS) and proton transfer reaction-mass spectrometry (PTR-MS). Given the high number of classes, advanced data mining methods are necessary. Random Forest (RF), Penalized Discriminant Analysis (PDA), Discriminant Partial Least Squares (dPLS) and Support Vector Machine (SVM) have been employed for cultivar classification and Random Forest-Recursive Feature Elimination (RF-RFE) has been used to perform feature selection. In particular the most important GC-MS and PTR-MS variables related to gray mold susceptibility of the selected raspberry cultivars have been investigated. Moving from GC-MS profiling to the more rapid and less invasive PTR-MS fingerprinting leads to a cultivar characterization which is still related to the corresponding Botrytis susceptibility level and therefore marker identification is still possible.
Palabras clave: Proton Transfer Reaction Mass Spectrometry , Raspberries , Cultivars , Chemometrics , Data Mining
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 370.3Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Atribución-NoComercial-SinDerivadas 2.5 Argentina (CC BY-NC-ND 2.5 AR)
Identificadores
URI: http://hdl.handle.net/11336/3180
URL: http://www.sciencedirect.com/science/article/pii/S0963996913000975
DOI: http://dx.doi.org/10.1016/j.foodres.2013.02.004
Colecciones
Articulos(CIFASIS)
Articulos de CENTRO INT.FRANCO ARG.D/CS D/L/INF.Y SISTEM.
Citación
Cappellin, Luca; Aprea, Eugenio; Granitto, Pablo Miguel; Romano, Andrea; Gasperi, Flavia; et al.; Multiclass methods in the analysis of metabolomic datasets: The example of raspberry cultivar volatile compounds detected by GC-MS and PTR-MS; Elsevier; Food Research International; 54; 1; 11-2013; 1313-1320
Compartir
Altmétricas
 

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES