Mostrar el registro sencillo del ítem

dc.contributor.author
Factorovich, Matias Hector  
dc.contributor.author
Molinero, Valeria  
dc.contributor.author
Scherlis Perel, Damian Ariel  
dc.date.available
2017-12-27T20:04:25Z  
dc.date.issued
2014-02  
dc.identifier.citation
Molinero, Valeria; Factorovich, Matias Hector; Scherlis Perel, Damian Ariel; Vapor Pressure of Water Nanodroplets; American Chemical Society; Journal of the American Chemical Society; 136; 12; 2-2014; 4508-4514  
dc.identifier.issn
0002-7863  
dc.identifier.uri
http://hdl.handle.net/11336/31728  
dc.description.abstract
Classical thermodynamics is assumed to be valid up to a certain length-scale, below which the discontinuous nature of matter becomes manifest. In particular, this must be the case for the description of the vapor pressure based on the Kelvin equation. However, the legitimacy of this equation in the nanoscopic regime can not be simply established, because the determination of the vapor pressure of very small droplets poses a challenge both for experiments and simulations. In this article we make use of a grand canonical screening approach recently proposed to compute the vapor pressures of finite systems from molecular dynamics simulations. This scheme is applied to water droplets, to show that the applicability of the Kelvin equation extends to unexpectedly small lengths, of only 1 nm, where the inhomogeneities in the density of matter occur within spatial lengths of the same order of magnitude as the size of the object. While in principle this appears to violate the main assumptions underlying thermodynamics, the density profiles reveal, however, that structures of this size are still homogeneous in the nanosecond time-scale. Only when the inhomogeneity in the density persists through the temporal average, as it is the case for clusters of 40 particles or less, do the macroscopic thermodynamics and the molecular descriptions depart from each other.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Nanodroplet  
dc.subject
Kelvin  
dc.subject
Vapor Pressure  
dc.subject
Thermodynamics  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Vapor Pressure of Water Nanodroplets  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-12-27T15:21:40Z  
dc.journal.volume
136  
dc.journal.number
12  
dc.journal.pagination
4508-4514  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Factorovich, Matias Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.description.fil
Fil: Molinero, Valeria. University of Utah; Estados Unidos  
dc.description.fil
Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.journal.title
Journal of the American Chemical Society  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/ja405408n  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/ja405408n