Mostrar el registro sencillo del ítem
dc.contributor.author
Factorovich, Matias Hector
dc.contributor.author
Molinero, Valeria
dc.contributor.author
Scherlis Perel, Damian Ariel
dc.date.available
2017-12-27T20:04:25Z
dc.date.issued
2014-02
dc.identifier.citation
Molinero, Valeria; Factorovich, Matias Hector; Scherlis Perel, Damian Ariel; Vapor Pressure of Water Nanodroplets; American Chemical Society; Journal of the American Chemical Society; 136; 12; 2-2014; 4508-4514
dc.identifier.issn
0002-7863
dc.identifier.uri
http://hdl.handle.net/11336/31728
dc.description.abstract
Classical thermodynamics is assumed to be valid up to a certain length-scale, below which the discontinuous nature of matter becomes manifest. In particular, this must be the case for the description of the vapor pressure based on the Kelvin equation. However, the legitimacy of this equation in the nanoscopic regime can not be simply established, because the determination of the vapor pressure of very small droplets poses a challenge both for experiments and simulations. In this article we make use of a grand canonical screening approach recently proposed to compute the vapor pressures of finite systems from molecular dynamics simulations. This scheme is applied to water droplets, to show that the applicability of the Kelvin equation extends to unexpectedly small lengths, of only 1 nm, where the inhomogeneities in the density of matter occur within spatial lengths of the same order of magnitude as the size of the object. While in principle this appears to violate the main assumptions underlying thermodynamics, the density profiles reveal, however, that structures of this size are still homogeneous in the nanosecond time-scale. Only when the inhomogeneity in the density persists through the temporal average, as it is the case for clusters of 40 particles or less, do the macroscopic thermodynamics and the molecular descriptions depart from each other.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
American Chemical Society
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Nanodroplet
dc.subject
Kelvin
dc.subject
Vapor Pressure
dc.subject
Thermodynamics
dc.subject.classification
Otras Ciencias Químicas
dc.subject.classification
Ciencias Químicas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Vapor Pressure of Water Nanodroplets
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-12-27T15:21:40Z
dc.journal.volume
136
dc.journal.number
12
dc.journal.pagination
4508-4514
dc.journal.pais
Estados Unidos
dc.description.fil
Fil: Factorovich, Matias Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
dc.description.fil
Fil: Molinero, Valeria. University of Utah; Estados Unidos
dc.description.fil
Fil: Scherlis Perel, Damian Ariel. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina
dc.journal.title
Journal of the American Chemical Society
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/ja405408n
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/ja405408n
Archivos asociados