Mostrar el registro sencillo del ítem

dc.contributor.author
Sokolov, Denis A.  
dc.contributor.author
Morozov, Yurii V.  
dc.contributor.author
McDonald, Matthew P.  
dc.contributor.author
Vietmeyer, Felix  
dc.contributor.author
Hodak, Jose Hector  
dc.contributor.author
Kuno, Masaru  
dc.date.available
2017-12-27T20:04:11Z  
dc.date.issued
2014-05  
dc.identifier.citation
Kuno, Masaru; Hodak, Jose Hector; Vietmeyer, Felix; McDonald, Matthew P.; Morozov, Yurii V.; Sokolov, Denis A.; et al.; Direct Observation of Single Layer Graphene Oxide Reduction through Spatially Resolved, Single Sheet Absorption/Emission Microscopy; American Chemical Society; Nano Letters; 14; 6; 5-2014; 3172-3179  
dc.identifier.issn
1530-6984  
dc.identifier.uri
http://hdl.handle.net/11336/31726  
dc.description.abstract
Laser reduction of graphene oxide (GO) offers unique opportunities for the rapid, nonchemical production of graphene. By tuning relevant reduction parameters, the band gap and conductivity of reduced GO can be precisely controlled. In situ monitoring of single layer GO reduction is therefore essential. In this report, we show the direct observation of laser-induced, single layer GO reduction through correlated changes to its absorption and emission. Absorption/emission movies illustrate the initial stages of single layer GO reduction, its transition to reduced-GO (rGO) as well as its subsequent decomposition upon prolonged laser illumination. These studies reveal GO’s photoreduction life cycle and through it native GO/rGO absorption coefficients, their intrasheet distributions as well as their spatial heterogeneities. Extracted absorption coefficients for unreduced GO are α405 nm ≈ 6.5 ± 1.1 × 104 cm–1, α520 nm ≈ 2.1 ± 0.4 × 104 cm–1, and α640 nm ≈ 1.1 ± 0.3 × 104 cm–1 while corresponding rGO α-values are α405 nm ≈ 21.6 ± 0.6 × 104 cm–1, α520 nm ≈ 16.9 ± 0.4 × 104 cm–1, and α640 nm ≈ 14.5 ± 0.4 × 104 cm–1. More importantly, the correlated absorption/emission imaging provides us with unprecedented insight into GO’s underlying photoreduction mechanism, given our ability to spatially resolve its kinetics and to connect local rate constants to activation energies. On a broader level, the developed absorption imaging is general and can be applied toward investigating the optical properties of other two-dimensional materials, especially those that are nonemissive and are invisible to current single molecule optical techniques.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
American Chemical Society  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Graphene Oxide  
dc.subject
Reduced Graphene Oxide  
dc.subject
Photolysis  
dc.subject
Absorption  
dc.subject
Emission  
dc.subject
Absorption Coefficient  
dc.subject.classification
Otras Ciencias Químicas  
dc.subject.classification
Ciencias Químicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Direct Observation of Single Layer Graphene Oxide Reduction through Spatially Resolved, Single Sheet Absorption/Emission Microscopy  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-12-27T15:21:37Z  
dc.journal.volume
14  
dc.journal.number
6  
dc.journal.pagination
3172-3179  
dc.journal.pais
Estados Unidos  
dc.description.fil
Fil: Sokolov, Denis A.. University Of Notre Dame-Indiana; Estados Unidos  
dc.description.fil
Fil: Morozov, Yurii V.. University Of Notre Dame-Indiana; Estados Unidos. Taras Shevchenko National University of Kiev; Rusia  
dc.description.fil
Fil: McDonald, Matthew P.. University Of Notre Dame-Indiana; Estados Unidos  
dc.description.fil
Fil: Vietmeyer, Felix. University Of Notre Dame-Indiana; Estados Unidos  
dc.description.fil
Fil: Hodak, Jose Hector. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Química, Física de los Materiales, Medioambiente y Energía. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Química, Física de los Materiales, Medioambiente y Energía; Argentina  
dc.description.fil
Fil: Kuno, Masaru. University Of Notre Dame-Indiana; Estados Unidos  
dc.journal.title
Nano Letters  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1021/nl500485n  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://pubs.acs.org/doi/10.1021/nl500485n