Mostrar el registro sencillo del ítem
dc.contributor.author
Quintana Zurro, Clara Ines
dc.contributor.author
Redondo, Marcelo
dc.contributor.author
Tirao, German Alfredo
dc.date.available
2017-12-27T19:26:14Z
dc.date.issued
2014-02
dc.identifier.citation
Tirao, German Alfredo; Redondo, Marcelo; Quintana Zurro, Clara Ines; Implementation of several mathematical algorithms to breast tissue density classification; Pergamon-Elsevier Science Ltd.; Radiation Physics and Chemistry (Oxford); 95; 2-2014; 261-263
dc.identifier.issn
0969-806X
dc.identifier.uri
http://hdl.handle.net/11336/31701
dc.description.abstract
The accuracy of mammographic abnormality detection methods is strongly dependent on breast tissue characteristics, where a dense breast tissue can hide lesions causing cancer to be detected at later stages. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. This paper presents the implementation and the performance of different mathematical algorithms designed to standardize the categorization of mammographic images, according to the American College of Radiology classifications. These mathematical techniques are based on intrinsic properties calculations and on comparison with an ideal homogeneous image (joint entropy, mutual information, normalized cross correlation and index Q) as categorization parameters. The algorithms evaluation was performed on 100 cases of the mammographic data sets provided by the Ministerio de Salud de la Provincia de Córdoba, Argentina—Programa de Prevención del Cáncer de Mama (Department of Public Health, Córdoba, Argentina, Breast Cancer Prevention Program). The obtained breast classifications were compared with the expert medical diagnostics, showing a good performance. The implemented algorithms revealed a high potentiality to classify breasts into tissue density categories.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Pergamon-Elsevier Science Ltd.
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Breast Density Classification
dc.subject
Mathematical Processing
dc.subject
Computer-Aided Diagnostic Systems
dc.subject
Mammography
dc.title
Implementation of several mathematical algorithms to breast tissue density classification
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-12-26T20:40:12Z
dc.journal.volume
95
dc.journal.pagination
261-263
dc.journal.pais
Estados Unidos
dc.journal.ciudad
New York
dc.description.fil
Fil: Quintana Zurro, Clara Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
dc.description.fil
Fil: Redondo, Marcelo. Universidad Nacional de Córdoba; Argentina
dc.description.fil
Fil: Tirao, German Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina
dc.journal.title
Radiation Physics and Chemistry (Oxford)
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.radphyschem.2013.10.006
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0969806X13005458
Archivos asociados