Mostrar el registro sencillo del ítem

dc.contributor.author
Quintana Zurro, Clara Ines  
dc.contributor.author
Redondo, Marcelo  
dc.contributor.author
Tirao, German Alfredo  
dc.date.available
2017-12-27T19:26:14Z  
dc.date.issued
2014-02  
dc.identifier.citation
Tirao, German Alfredo; Redondo, Marcelo; Quintana Zurro, Clara Ines; Implementation of several mathematical algorithms to breast tissue density classification; Pergamon-Elsevier Science Ltd.; Radiation Physics and Chemistry (Oxford); 95; 2-2014; 261-263  
dc.identifier.issn
0969-806X  
dc.identifier.uri
http://hdl.handle.net/11336/31701  
dc.description.abstract
The accuracy of mammographic abnormality detection methods is strongly dependent on breast tissue characteristics, where a dense breast tissue can hide lesions causing cancer to be detected at later stages. In addition, breast tissue density is widely accepted to be an important risk indicator for the development of breast cancer. This paper presents the implementation and the performance of different mathematical algorithms designed to standardize the categorization of mammographic images, according to the American College of Radiology classifications. These mathematical techniques are based on intrinsic properties calculations and on comparison with an ideal homogeneous image (joint entropy, mutual information, normalized cross correlation and index Q) as categorization parameters. The algorithms evaluation was performed on 100 cases of the mammographic data sets provided by the Ministerio de Salud de la Provincia de Córdoba, Argentina—Programa de Prevención del Cáncer de Mama (Department of Public Health, Córdoba, Argentina, Breast Cancer Prevention Program). The obtained breast classifications were compared with the expert medical diagnostics, showing a good performance. The implemented algorithms revealed a high potentiality to classify breasts into tissue density categories.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Pergamon-Elsevier Science Ltd.  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Breast Density Classification  
dc.subject
Mathematical Processing  
dc.subject
Computer-Aided Diagnostic Systems  
dc.subject
Mammography  
dc.title
Implementation of several mathematical algorithms to breast tissue density classification  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-12-26T20:40:12Z  
dc.journal.volume
95  
dc.journal.pagination
261-263  
dc.journal.pais
Estados Unidos  
dc.journal.ciudad
New York  
dc.description.fil
Fil: Quintana Zurro, Clara Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina  
dc.description.fil
Fil: Redondo, Marcelo. Universidad Nacional de Córdoba; Argentina  
dc.description.fil
Fil: Tirao, German Alfredo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Córdoba. Instituto de Física Enrique Gaviola. Universidad Nacional de Córdoba. Instituto de Física Enrique Gaviola; Argentina  
dc.journal.title
Radiation Physics and Chemistry (Oxford)  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.radphyschem.2013.10.006  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0969806X13005458