Repositorio Institucional
Repositorio Institucional
CONICET Digital
  • Inicio
  • EXPLORAR
    • AUTORES
    • DISCIPLINAS
    • COMUNIDADES
  • Estadísticas
  • Novedades
    • Noticias
    • Boletines
  • Ayuda
    • General
    • Datos de investigación
  • Acerca de
    • CONICET Digital
    • Equipo
    • Red Federal
  • Contacto
JavaScript is disabled for your browser. Some features of this site may not work without it.
  • INFORMACIÓN GENERAL
  • RESUMEN
  • ESTADISTICAS
 
Artículo

A Method to Improve the Analysis of Cluster Ensembles

Pividori, Milton DamiánIcon ; Stegmayer, GeorginaIcon ; Milone, Diego HumbertoIcon
Fecha de publicación: 03/2014
Editorial: Sociedad Iberoamericana de Inteligencia Artificial
Revista: Inteligencia Artificial
ISSN: 1137-3601
e-ISSN: 1988-3064
Idioma: Inglés
Tipo de recurso: Artículo publicado
Clasificación temática:
Ciencias de la Computación

Resumen

Clustering is fundamental to understand the structure of data. In the past decade the cluster ensembleproblem has been introduced, which combines a set of partitions (an ensemble) of the data to obtain a singleconsensus solution that outperforms all the ensemble members. However, there is disagreement about which arethe best ensemble characteristics to obtain a good performance: some authors have suggested that highly differentpartitions within the ensemble are beneï¬ cial for the ï¬ nal performance, whereas others have stated that mediumdiversity among them is better. While there are several measures to quantify the diversity, a better method toanalyze the best ensemble characteristics is necessary. This paper introduces a new ensemble generation strategyand a method to make slight changes in its structure. Experimental results on six datasets suggest that this isan important step towards a more systematic approach to analyze the impact of the ensemble characteristics onthe overall consensus performance.
Palabras clave: Consensus Clustering , Ensemble Diversity , Cluster Ensemble Generation
Ver el registro completo
 
Archivos asociados
Thumbnail
 
Tamaño: 453.2Kb
Formato: PDF
.
Descargar
Licencia
info:eu-repo/semantics/openAccess Excepto donde se diga explícitamente, este item se publica bajo la siguiente descripción: Creative Commons Attribution-NonCommercial 2.5 Unported (CC BY-NC 2.5)
Identificadores
URI: http://hdl.handle.net/11336/31392
URL: http://journaldocs.iberamia.org/articles/1051/article%20(1).pdf
URL: http://www.redalyc.org/html/925/92530455006/
Colecciones
Articulos(CCT - SANTA FE)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - SANTA FE
Articulos(SINC(I))
Articulos de INST. DE INVESTIGACION EN SEÑALES, SISTEMAS E INTELIGENCIA COMPUTACIONAL
Citación
Milone, Diego Humberto; Stegmayer, Georgina; Pividori, Milton Damián; A Method to Improve the Analysis of Cluster Ensembles; Sociedad Iberoamericana de Inteligencia Artificial; Inteligencia Artificial; 17; 53; 3-2014; 46-56
Compartir

Enviar por e-mail
Separar cada destinatario (hasta 5) con punto y coma.
  • Facebook
  • X Conicet Digital
  • Instagram
  • YouTube
  • Sound Cloud
  • LinkedIn

Los contenidos del CONICET están licenciados bajo Creative Commons Reconocimiento 2.5 Argentina License

https://www.conicet.gov.ar/ - CONICET

Inicio

Explorar

  • Autores
  • Disciplinas
  • Comunidades

Estadísticas

Novedades

  • Noticias
  • Boletines

Ayuda

Acerca de

  • CONICET Digital
  • Equipo
  • Red Federal

Contacto

Godoy Cruz 2290 (C1425FQB) CABA – República Argentina – Tel: +5411 4899-5400 repositorio@conicet.gov.ar
TÉRMINOS Y CONDICIONES