Artículo
Isochronous bifurcations in second-order delay differential equations
Fecha de publicación:
06/2014
Editorial:
Texas State University
Revista:
Electronic Journal of Differential Equations
ISSN:
1072-6691
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this article we consider a special type of second-order delay differential equations. More precisely, we take an equation of a conservative mechanical system in one dimension with an added term that is a function of the difference between the value of the position at time t minus the position at the delayed time t−τ. For this system, we show that, under certain conditions of non-degeneration and of convergence of the periodic solutions obtained by the Homotopy Analysis Method, bifurcation branches appearing in a neighbourhood of Hopf bifurcation due to the delay are isochronous; i.e., all the emerging cycles have the same frequency.
Palabras clave:
Delay Differential Equations
,
Hopf Bifurcation
,
Isochronous Cycles
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(CCT - BAHIA BLANCA)
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Articulos de CTRO.CIENTIFICO TECNOL.CONICET - BAHIA BLANCA
Citación
Reartes, Walter; Bel, Andrea Liliana; Isochronous bifurcations in second-order delay differential equations; Texas State University; Electronic Journal of Differential Equations; 2014; 162; 6-2014; 1-12
Compartir