Artículo
Pointwise convergence to the initial data for nonlocal dyadic diffusions
Fecha de publicación:
03/2016
Editorial:
Springer Heidelberg
Revista:
Czechoslovak Mathematical Journal
ISSN:
0011-4642
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
In this paper we solve the initial value problem for the diffusion induced by dyadic fractional derivative s in R +. First we obtain the spectral analysis of the dyadic fractional derivative operator in terms of the Haar system, which unveils a structure for the underlying “heat kernel”. We show that this kernel admits an integrable and decreasing majorant that involves the dyadic distance. This allows us to provide an estimate of the maximal operator of the diffusion by the Hardy-Littlewood dyadic maximal operator. As a consequence we obtain the pointwise convergence to the initial data.
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Actis, Marcelo Jesús; Aimar, Hugo Alejandro; Pointwise convergence to the initial data for nonlocal dyadic diffusions; Springer Heidelberg; Czechoslovak Mathematical Journal; 66; 1; 3-2016; 193-204
Compartir
Altmétricas