Artículo
Nonlocal diffusions on fractals. Qualitative properties and numerical approximations.
Fecha de publicación:
07/2016
Editorial:
Oxford University Press
Revista:
Ima Journal Of Numerical Analysis
ISSN:
0272-4979
Idioma:
Inglés
Tipo de recurso:
Artículo publicado
Clasificación temática:
Resumen
We propose a numerical method to approximate the solution of a nonlocal diffusion problem on a general setting of metric measure spaces. These spaces include, but are not limited to, fractals, manifolds and Euclidean domains. We obtain error estimates in L ∞(L p ) for p = 1,∞ under the sole assumption of the initial datum being in L p . An improved bound for the error in L ∞(L 1 ) is obtained when the initial datum is in L 2 . We also derive some qualitative properties of the solutions like stability, comparison principles and study the asymptotic behavior as t → ∞. We finally present two examples on fractals: the Sierpinski gasket and the Sierpinski carpet, which illustrate on the effect of nonlocal diffusion for piecewise constant initial datum.
Palabras clave:
Nonlocal Diffusions
,
Discretizations
,
Spaces of Homogeneous Type
,
Fractals
Archivos asociados
Licencia
Identificadores
Colecciones
Articulos(IMAL)
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Articulos de INST.DE MATEMATICA APLICADA "LITORAL"
Citación
Actis, Marcelo Jesús; Morin, Pedro; Carena, Marilina; Nonlocal diffusions on fractals. Qualitative properties and numerical approximations.; Oxford University Press; Ima Journal Of Numerical Analysis; 36; 3; 7-2016; 1143-1166
Compartir
Altmétricas