Mostrar el registro sencillo del ítem

dc.contributor.author
Marcos, Miguel  
dc.date.available
2017-12-13T16:33:44Z  
dc.date.issued
2017-01  
dc.identifier.citation
Marcos, Miguel; On Newton-Sobolev spaces; Kossuth Lajos Tudomanyegyetem; Publicationes Mathematicae-debrecen; 90; 1-2; 1-2017; 107-124  
dc.identifier.issn
0033-3883  
dc.identifier.uri
http://hdl.handle.net/11336/30423  
dc.description.abstract
Newton-Sobolev spaces, as presented by N. Shanmugalingam, describe a way to extend Sobolev spaces to the metric setting via upper gradients, for metric spaces with ´sucient´ paths of nite length. Sometimes, as is the case of parabolic metrics, most curves are non-rectiable. We generalize some of these results to spaces where paths are not necessarily measured by arc length. Under the assumption of a Poincaré-type inequality and an arc-chord property here dened, we obtain the density of some Lipschitz classes, relate Newton-Sobolev spaces to those dened by Hajªasz, and we also get some Sobolev embedding theorems. Finally, we illustrate some non-standard settings where these conditions hold, specically by adding a weight to arc-length.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Kossuth Lajos Tudomanyegyetem  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Newton-Sobolev Spaces  
dc.subject
Spaces of Homogeneous Type  
dc.subject
Poincaré Inequality  
dc.subject
Upper Gradients  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
On Newton-Sobolev spaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-12-12T18:15:38Z  
dc.identifier.eissn
2064-2849  
dc.journal.volume
90  
dc.journal.number
1-2  
dc.journal.pagination
107-124  
dc.journal.pais
Hungría  
dc.journal.ciudad
Debrecen  
dc.description.fil
Fil: Marcos, Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.journal.title
Publicationes Mathematicae-debrecen  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.5486/PMD.2017.7486