Mostrar el registro sencillo del ítem

dc.contributor.author
Marcos, Miguel  
dc.date.available
2017-12-13T16:30:34Z  
dc.date.issued
2016-08  
dc.identifier.citation
Marcos, Miguel; Bessel Potentials in Ahlfors Regular Metric Spaces; Springer; Potential Analysis; 45; 2; 8-2016; 201-227  
dc.identifier.issn
0926-2601  
dc.identifier.uri
http://hdl.handle.net/11336/30420  
dc.description.abstract
In this paper we introduce Bessel potentials and the Sobolev potential spaces resulting from them in the context of Ahlfors regular metric spaces. The Bessel kernel is defined using a Coifman type approximation of the identity, and we show integration against it improves the regularity of Lipschitz, Besov and Sobolev-type functions. For potential spaces, we prove density of Lipschitz functions, and several embedding results, including Sobolev-type embedding theorems. Finally, using singular integrals techniques such as the T1 theorem, we find that for small orders of regularity Bessel potentials are inversible, its inverse in terms of the fractional derivative, and show a way to characterize potential spaces, concluding that a function belongs to the Sobolev potential space if and only if itself and its fractional derivative are in Lp . Moreover, this characterization allows us to prove these spaces in fact coincide with the classical potential Sobolev spaces in the Euclidean case.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Springer  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Bessel Potential  
dc.subject
Ahlfors Spaces  
dc.subject
Fractional Derivative  
dc.subject
Sobolev Spaces  
dc.subject
Besov Spaces  
dc.subject.classification
Matemática Pura  
dc.subject.classification
Matemáticas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Bessel Potentials in Ahlfors Regular Metric Spaces  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-12-12T18:15:32Z  
dc.journal.volume
45  
dc.journal.number
2  
dc.journal.pagination
201-227  
dc.journal.pais
Alemania  
dc.journal.ciudad
Berlin  
dc.description.fil
Fil: Marcos, Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina  
dc.journal.title
Potential Analysis  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11118-016-9543-4  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11118-016-9543-4