Mostrar el registro sencillo del ítem
dc.contributor.author
Marcos, Miguel
dc.date.available
2017-12-13T16:30:34Z
dc.date.issued
2016-08
dc.identifier.citation
Marcos, Miguel; Bessel Potentials in Ahlfors Regular Metric Spaces; Springer; Potential Analysis; 45; 2; 8-2016; 201-227
dc.identifier.issn
0926-2601
dc.identifier.uri
http://hdl.handle.net/11336/30420
dc.description.abstract
In this paper we introduce Bessel potentials and the Sobolev potential spaces resulting from them in the context of Ahlfors regular metric spaces. The Bessel kernel is defined using a Coifman type approximation of the identity, and we show integration against it improves the regularity of Lipschitz, Besov and Sobolev-type functions. For potential spaces, we prove density of Lipschitz functions, and several embedding results, including Sobolev-type embedding theorems. Finally, using singular integrals techniques such as the T1 theorem, we find that for small orders of regularity Bessel potentials are inversible, its inverse in terms of the fractional derivative, and show a way to characterize potential spaces, concluding that a function belongs to the Sobolev potential space if and only if itself and its fractional derivative are in Lp . Moreover, this characterization allows us to prove these spaces in fact coincide with the classical potential Sobolev spaces in the Euclidean case.
dc.format
application/pdf
dc.language.iso
eng
dc.publisher
Springer
dc.rights
info:eu-repo/semantics/openAccess
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/
dc.subject
Bessel Potential
dc.subject
Ahlfors Spaces
dc.subject
Fractional Derivative
dc.subject
Sobolev Spaces
dc.subject
Besov Spaces
dc.subject.classification
Matemática Pura
dc.subject.classification
Matemáticas
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS
dc.title
Bessel Potentials in Ahlfors Regular Metric Spaces
dc.type
info:eu-repo/semantics/article
dc.type
info:ar-repo/semantics/artículo
dc.type
info:eu-repo/semantics/publishedVersion
dc.date.updated
2017-12-12T18:15:32Z
dc.journal.volume
45
dc.journal.number
2
dc.journal.pagination
201-227
dc.journal.pais
Alemania
dc.journal.ciudad
Berlin
dc.description.fil
Fil: Marcos, Miguel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Santa Fe. Instituto de Matemática Aplicada del Litoral. Universidad Nacional del Litoral. Instituto de Matemática Aplicada del Litoral; Argentina
dc.journal.title
Potential Analysis
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1007/s11118-016-9543-4
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://link.springer.com/article/10.1007%2Fs11118-016-9543-4
Archivos asociados