Mostrar el registro sencillo del ítem

dc.contributor.author
Allen, Julie M.  
dc.contributor.author
Boyd, Christopher  
dc.contributor.author
Nguyen, Nam Phuong  
dc.contributor.author
Vachaspati, Pranjal  
dc.contributor.author
Warnow, Tandy  
dc.contributor.author
Huang, Daisie I.  
dc.contributor.author
Grady, Patrick G. S.  
dc.contributor.author
Bell, Kayce C.  
dc.contributor.author
Cronk, Quentin C. B.  
dc.contributor.author
Mugisha, Lawrence  
dc.contributor.author
Pittendrigh, Barry R.  
dc.contributor.author
Leonardi, María Soledad  
dc.contributor.author
Reed, David L.  
dc.contributor.author
Johnson, Kevin P.  
dc.date.available
2017-12-12T16:53:45Z  
dc.date.issued
2017-03-06  
dc.identifier.citation
Allen, Julie M.; Boyd, Christopher; Nguyen, Nam Phuong ; Vachaspati, Pranjal ; Warnow, Tandy ; et al.; Phylogenomics from Whole Genome Sequences Using aTRAM; Oxford University Press; Systematic Biology; 66; 5; 6-3-2017; 786–798  
dc.identifier.issn
1063-5157  
dc.identifier.uri
http://hdl.handle.net/11336/30290  
dc.description.abstract
Novel sequencing technologies are rapidly expanding the size of data sets that can be applied to phylogenetic studies. Currently the most commonly used phylogenomic approaches involve some form of genome reduction. While these approaches make assembling phylogenomic data sets more economical for organisms with large genomes, they reduce the genomic coverage and thereby the long-term utility of the data. Currently, for organisms with moderate to small genomes (< 1000 Mbp) it is feasible to sequence the entire genome at modest coverage (10−30×). Computational challenges for handling these large data sets can be alleviated by assembling targeted reads, rather than assembling the entire genome, to produce a phylogenomic data matrix. Here we demonstrate the use of automated Target Restricted Assembly Method (aTRAM) to assemble 1107 single-copy ortholog genes from whole genome sequencing of sucking lice (Anoplura) and out-groups. We developed a pipeline to extract exon sequences from the aTRAM assemblies by annotating them with respect to the original target protein. We aligned these protein sequences with the inferred amino acids and then performed phylogenetic analyses on both the concatenated matrix of genes and on each gene separately in a coalescent analysis. Finally, we tested the limits of successful assembly in aTRAM by assembling 100 genes from close- to distantly related taxa at high to low levels of coverage. Both the concatenated analysis and the coalescent-based analysis produced the same tree topology, which was consistent with previously published results and resolved weakly supported nodes. These results demonstrate that this approach is successful at developing phylogenomic data sets from raw genome sequencing reads. Further, we found that with coverages above 5−10× , aTRAM was successful at assembling 80–90% of the contigs for both close and distantly related taxa. As sequencing costs continue to decline, we expect full genome sequencing will become more feasible for a wider array of organisms, and aTRAM will enable mining of these genomic data sets for an extensive variety of applications, including phylogenomics. [aTRAM; gene assembly; genome sequencing; phylogenomics.]  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Oxford University Press  
dc.rights
info:eu-repo/semantics/openAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Phylogenomics  
dc.subject
Genome Sequencing  
dc.subject
Atram  
dc.subject
Gene Assembly  
dc.subject.classification
Otras Ciencias Biológicas  
dc.subject.classification
Ciencias Biológicas  
dc.subject.classification
CIENCIAS NATURALES Y EXACTAS  
dc.title
Phylogenomics from Whole Genome Sequences Using aTRAM  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-12-04T18:09:04Z  
dc.journal.volume
66  
dc.journal.number
5  
dc.journal.pagination
786–798  
dc.journal.pais
Reino Unido  
dc.journal.ciudad
Oxford  
dc.description.fil
Fil: Allen, Julie M.. University of Illinois at Urbana-Champaign; Estados Unidos  
dc.description.fil
Fil: Boyd, Christopher. University of Illinois at Urbana-Champaign; Estados Unidos  
dc.description.fil
Fil: Nguyen, Nam Phuong. University of Illinois at Urbana-Champaign; Estados Unidos  
dc.description.fil
Fil: Vachaspati, Pranjal. University of Illinois at Urbana-Champaign; Estados Unidos  
dc.description.fil
Fil: Warnow, Tandy. University of Illinois at Urbana-Champaign; Estados Unidos  
dc.description.fil
Fil: Huang, Daisie I.. University of British Columbia; Canadá  
dc.description.fil
Fil: Grady, Patrick G. S.. University of Illinois at Urbana-Champaign; Estados Unidos  
dc.description.fil
Fil: Bell, Kayce C.. University Of New Mexico; Estados Unidos  
dc.description.fil
Fil: Cronk, Quentin C. B.. University of British Columbia; Canadá  
dc.description.fil
Fil: Mugisha, Lawrence. Makerere University; Uganda  
dc.description.fil
Fil: Pittendrigh, Barry R.. Michigan State University; Estados Unidos  
dc.description.fil
Fil: Leonardi, María Soledad. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Centro Nacional Patagónico. Instituto de Biología de Organismos Marinos; Argentina  
dc.description.fil
Fil: Reed, David L.. University of Florida; Estados Unidos  
dc.description.fil
Fil: Johnson, Kevin P.. University of Illinois at Urbana-Champaign; Estados Unidos  
dc.journal.title
Systematic Biology  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/https://academic.oup.com/sysbio/article-lookup/doi/10.1093/sysbio/syw105  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1093/sysbio/syw105