Mostrar el registro sencillo del ítem

dc.contributor.author
Caracciolo, Pablo Christian  
dc.contributor.author
Rial-Hermida, María Isabel  
dc.contributor.author
Montini Ballarin, Florencia  
dc.contributor.author
Abraham, Gustavo Abel  
dc.contributor.author
Concheiro, Angel  
dc.contributor.author
Álvarez Lorenzo, Carmen  
dc.date.available
2017-12-12T16:48:53Z  
dc.date.issued
2017-03  
dc.identifier.citation
Caracciolo, Pablo Christian; Rial-Hermida, María Isabel; Montini Ballarin, Florencia; Abraham, Gustavo Abel; Concheiro, Angel; et al.; Surface-modified bioresorbable electrospun scaffolds for improving hemocompatibility of vascular grafts; Elsevier Science; Materials Science and Engineering: C; 75; 3-2017; 1115-1127  
dc.identifier.issn
0928-4931  
dc.identifier.uri
http://hdl.handle.net/11336/30282  
dc.description.abstract
The replacement of small-diameter vessels is one of the main challenges in tissue engineering. Moreover, the surface modification of small-diameter vascular grafts (SDVG) is a key factor in the success of the therapy due to their increased thrombogenicity and infection susceptibility caused by the lack of a functional endothelium.In this work, electrospun scaffolds were prepared from blends of poly(L-lactic acid) (PLLA) and segmented polyurethane (PHD) with a composition designed to perform as SDVG inner layer. The scaffolds were then successfully surface-modified with heparin following two different strategies that rely on grafting of heparin to eitherPLLA or PHD functional groups. Both strategies afforded high heparin density, being higher for urethane methodology. The functionalized scaffolds did not cause hemolysis and inhibited platelet adhesion to a large extent. However, lysozyme/heparin-functionalized scaffolds obtained through urethane methodology achieved the highest platelet attachment inhibition. The increase in hydrophilicity and water absorption of the surfacefunctionalized nanostructures favored adhesion and proliferation of human adipose-derived stemcells. Heparinized surfaces conjugated with lysozyme presented microbial hydrolysis activity dependent on heparin content. Overall, a better performance obtained for urethane-modified scaffold, added to the fact that no chain scission is involved in urethane methodology, makes the latter the best choice for surface modification of PLLA/PHD 50/50 electrospun scaffolds. Scaffolds functionalized by this route may perform as advanced components ofSDVG suitable for vascular tissue engineering, exhibiting biomimetic behavior, avoiding thrombi formation and providing antimicrobial features.  
dc.format
application/pdf  
dc.language.iso
eng  
dc.publisher
Elsevier Science  
dc.rights
info:eu-repo/semantics/restrictedAccess  
dc.rights.uri
https://creativecommons.org/licenses/by-nc-sa/2.5/ar/  
dc.subject
Surface Modification  
dc.subject
Antithrombogeneicity  
dc.subject
Heparin  
dc.subject
Vascular Grafts  
dc.subject
Electrospinning  
dc.subject
Bioresorbable Polymers  
dc.subject
Lysozyme  
dc.subject.classification
Biotecnología Industrial  
dc.subject.classification
Biotecnología Industrial  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.subject.classification
Bioproductos, Biomateriales, Bioplásticos, Biocombustibles, Bioderivados, etc.  
dc.subject.classification
Biotecnología Industrial  
dc.subject.classification
INGENIERÍAS Y TECNOLOGÍAS  
dc.title
Surface-modified bioresorbable electrospun scaffolds for improving hemocompatibility of vascular grafts  
dc.type
info:eu-repo/semantics/article  
dc.type
info:ar-repo/semantics/artículo  
dc.type
info:eu-repo/semantics/publishedVersion  
dc.date.updated
2017-12-04T18:03:59Z  
dc.journal.volume
75  
dc.journal.pagination
1115-1127  
dc.journal.pais
Países Bajos  
dc.journal.ciudad
Amsterdam  
dc.description.fil
Fil: Caracciolo, Pablo Christian. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Rial-Hermida, María Isabel. Universidad de Santiago de Compostela; España  
dc.description.fil
Fil: Montini Ballarin, Florencia. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Abraham, Gustavo Abel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Mar del Plata. Instituto de Investigaciones en Ciencia y Tecnología de Materiales. Universidad Nacional de Mar del Plata. Facultad de Ingeniería. Instituto de Investigaciones en Ciencia y Tecnología de Materiales; Argentina  
dc.description.fil
Fil: Concheiro, Angel. Universidad de Santiago de Compostela; España  
dc.description.fil
Fil: Álvarez Lorenzo, Carmen. Universidad de Santiago de Compostela; España  
dc.journal.title
Materials Science and Engineering: C  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/url/http://www.sciencedirect.com/science/article/pii/S0928493116320124  
dc.relation.alternativeid
info:eu-repo/semantics/altIdentifier/doi/http://dx.doi.org/10.1016/j.msec.2017.02.151